1、2.2.1 对数与对数运算,第一课时 对 数,问题提出,1.截止到1999年底,我国人口约13亿.如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)?到哪一年我国的人口数将达到18亿?,13 (11)x18,求x=?,3.上面的实际问题归结为一个什么数学问题?,2.假设2006年我国国民生产总值为a亿元,如果每年的平均增长率为8% ,那么经过多少年我国的国民生产总值是2006年的2倍?,(18)x2,求x=?,已知底数和幂的值,求指数.,对数,知识探究(一):对数的概念,思考1:若24M,则M? 若22N,则N?,思考3:满足2x3的x的值,我们用log
2、23表示,即xlog23,并叫做“以2为底3的对数”.那么满足2x16,2x ,4x8的x的值可分别怎样表示?,思考4:一般地,如果axN(a0,且a1),那么数x叫做什么?怎样表示?,xlogaN,思考6: 满足 , , (其中e=2.7182818459045)的x的值可分别怎样表示?这样的对数有什么特殊名称?,思考5:前面问题中, , 中的x的值可分别怎样表示?,思考1:当a0,且a1时,若axN,则xlogaN,反之成立吗?,思考2:在指数式axN和对数式xlogaN中,a,x,N各自的地位有什么不同?,知识探究(二):对数与指数的关系,思考3:当a0,且a1时,loga(-2),loga0存在吗?为什么?由此能得到什么结论?,思考4:根据对数定义,logal和logaa(a0,a1)的值分别是多少?,思考5:若axN,则xlogaN ,二者组合可得什么等式?,理论迁移,例1.将下列指数式化为对数式,对数式 化为指数式: (1) 54625 ; (2) 26 ; (3) ( )m5.73 ; (4) ; (5) lg0.01=; (6) ln102.303.,例2.求下列各式中的值: (1)log64x ; (2) logx86 ; (3)lg100=x; (4)lne2 .,