收藏 分享(赏)

天津市高中数学(人教a版)(人教a版)必修二课件:1.3.1 空间几何体的表面积与体积(共34张ppt).ppt

上传人:无敌 文档编号:1323674 上传时间:2018-06-24 格式:PPT 页数:34 大小:488.50KB
下载 相关 举报
天津市高中数学(人教a版)(人教a版)必修二课件:1.3.1 空间几何体的表面积与体积(共34张ppt).ppt_第1页
第1页 / 共34页
天津市高中数学(人教a版)(人教a版)必修二课件:1.3.1 空间几何体的表面积与体积(共34张ppt).ppt_第2页
第2页 / 共34页
天津市高中数学(人教a版)(人教a版)必修二课件:1.3.1 空间几何体的表面积与体积(共34张ppt).ppt_第3页
第3页 / 共34页
天津市高中数学(人教a版)(人教a版)必修二课件:1.3.1 空间几何体的表面积与体积(共34张ppt).ppt_第4页
第4页 / 共34页
天津市高中数学(人教a版)(人教a版)必修二课件:1.3.1 空间几何体的表面积与体积(共34张ppt).ppt_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、1.3.1 柱体、锥体、台体的表 面积与体积,1.3 空间几何体的表面积与体积,问题提出,1.对于空间几何体,我们分别从结构特征和视图两个方面进行了研究,为了度量一个几何体的大小,我们还须进一步学习几何体的表面积和体积.,2.柱、锥、台、球是最基本、最简单的几何体,研究空间几何体的表面积和体积,应以柱、锥、台、球的表面积和体积为基础.那么如何求柱、锥、台、球的表面积和体积呢?,柱体、锥体、台体的表面积与体积,知识探究(一)柱体、锥体、台体的表面积,思考1:面积是相对于平面图形而言的,体积是相对于空间几何体而言的.你知道面积和体积的含义吗?,面积:平面图形所占平面的大小,体积:几何体所占空间的大

2、小,思考2:所谓表面积,是指几何体表面的面积.怎样理解棱柱、棱锥、棱台的表面积?,各个侧面和底面的面积之和或展开图的面积.,思考3:圆柱、圆锥、圆台的底面都是圆面,侧面都是曲面,怎样求它们的侧面面积?,思考4:圆柱的侧面展开图的形状有哪些特征?如果圆柱的底面半径为r,母线长为l,那么圆柱的表面积公式是什么?,思考5:圆锥的侧面展开图的形状有哪些特征?如果圆锥的底面半径为r,母线长为l,那么圆锥的表面积公式是什么?,思考6:圆台的侧面展开图的形状有哪些特征?如果圆台的上、下底面半径分别为r、r,母线长为l,那么圆台的表面积公式是什么?,思考7:在圆台的表面积公式中,若r=r,r=0,则公式分别变

3、形为什么?,知识探究(二)柱体、锥体、台体的体积,思考1:你还记得正方体、长方体和圆柱的体积公式吗?它们可以统一为一个什么公式?,思考2:推广到一般的棱柱和圆柱,你猜想柱体的体积公式是什么?,思考3:关于体积有如下几个原理: (1)相同的几何体的体积相等; (2)一个几何体的体积等于它的各部分体积之和; (3)等底面积等高的两个同类几何体的体积相等; (4)体积相等的两个几何体叫做等积体.,将一个三棱柱按如图所示分解成三个三棱锥,那么这三个三棱锥的体积有什么关系?它们与三棱柱的体积有什么关系?,思考4:推广到一般的棱锥和圆锥,你猜想锥体的体积公式是什么?,思考5:根据棱台和圆台的定义,如何计算

4、台体的体积?,设台体的上、下底面面积分别为S、S,高为h,那么台体的体积公式是什么?,思考6:在台体的体积公式中,若S=S,S=0,则公式分别变形为什么?,理论迁移,例1 求各棱长都为a的四面体的表面积.,例2 一个圆台形花盆盆口直径为20cm,盆底直径为15cm,底部渗水圆孔直径为1.5cm,盆壁长15cm,为了美化花盆的外观,需要涂油漆. 已知每平方米用100毫升油漆,涂100个这样的花盆需要多少油漆(精确到1毫升)?,15,例3 有一堆规格相同的铁制六角螺帽共重5.8kg(铁的密度是7.8g/cm3),已知螺帽的底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽

5、大约有多少个?,V2956(mm3)=2.956(cm3),5.81007.82.956252(个),作业:P28习题1.3 A组: 1,2,3,4,5.,1.3.2 球的表面积和体积,1.3 空间几何体的表面积与体积,问题提出,1.柱体、锥体、台体的体积公式分别是什么?圆柱、圆锥、圆台的表面积公式分别是什么?,2.球是一个旋转体,它也有表面积和体积,怎样求一个球的表面积和体积也就成为我们学习的内容.,球的表面积和体积,知识探究(一):球的体积,思考1:从球的结构特征分析,球的大小由哪个量所确定?,思考2:底面半径和高都为R的圆柱和圆锥的体积分别是什么?,思考3:如图,对一个半径为R的半球,其

6、体积与上述圆柱和圆锥的体积有何大小关系?,思考4:根据上述圆柱、圆锥的体积,你猜想半球的体积是什么?,思考5:由上述猜想可知,半径为R的球的体积 ,这是一个正确的结论,你能提出一些证明思路吗?,知识探究(二):球的表面积,思考1:半径为r的圆面积公式是什么?它是怎样得出来的?,思考2:把球面任意分割成n个“小球面片”,它们的面积之和等于什么?,思考3:以这些“小球面片”为底,球心为顶点的“小锥体”近似地看成棱锥,那么这些小棱锥的底面积和高近似地等于什么?它们的体积之和近似地等于什么?,思考4:你能由此推导出半径为R的球的表面积公式吗?,思考5:经过球心的截面圆面积是什么?它与球的表面积有什么关系?,球的表面积等于球的大圆面积的4倍,理论迁移,例1 如图,圆柱的底面直径与高都等于球的直径,求证: (1)球的体积等于圆柱体积的 ;(2)球的表面积等于圆柱的侧面积.,例2 已知正方体的八个顶点都在球O的球面上,且正方体的表面积为a2,求球O的表面积和体积.,例3 有一种空心钢球,质量为142g(钢的密度为7.9g/cm3),测得其外径为5cm,求它的内径(精确到0.1cm).,例4 已知A、B、C为球面上三点,AC=BC=6,AB=4,球心O与ABC的外心M的距离等于球半径的一半,求这个球的表面积和体积.,作业:P28练习:1,2,3.,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报