1、122.2 公式法素材一 新课导入设计情景导入 置疑导入 归纳导入 复习导入 类比导入 悬念激趣置疑导入 在上一节课已学的用配方法解一元二次方程的基础上创设情景解下列一元二次方程:(1)x24 x20;(2)3 x26 x10;(3)4 x216 x170;(4)3 x24 x70.然后让学生仔细观察四个题目的解答过程,寻找有什么相同之处和不同之处?接着再改变上面每道题的其中一个系数,得到四个新的方程:(1)3x24 x20;(2)3 x22 x10;(3)4 x216 x30;(4)3 x2 x70.思考 1:新的题目与原题的解题过程相比,会有什么变化?由学生的观察讨论得到:用配方法解不同一
2、元二次方程的过程中,相同之处是配方的过程(程序化的操作),不同之处是方程的根的情况及其方程的根思考 2:既然过程是相同的,为什么会出现根不同的情况?方程的根与什么有关?有怎样的关系?如何进一步探究?说明与建议 说明:1.复习巩固旧知识,为本节课的学习打下更好的基础;2.让学生充分感受用配方法解题既存在着共性,也存在着不同的现象,由此激发学生的求知欲望;3.通过问题引导学生感受、猜测方程的根与系数有一定的关系,从而引导学生去探究建议:在学生利用配方法解一元二次方程时,为了节约时间,可以让学生分组解答,比如将同学按列随机分成四组分别解答题目,再分别展示答案,让学生感受到解答过程的共性复习导入 用配
3、方法解一般形式的一元二次方程 ax2bxc0(a0)因为 a0,所以可以把方程的两边都除以二次项系数 a,得_x 2 x 0_,ba ca移项,得_x 2 x _,ba ca配方,得_x 2 x( )2 ( )2_,即(x )2 .ba b2a ca b2a b2a b2 4ac4a2因为 a0,所以 4a20,当 b24ac0 时,得_x _,b2a b2 4ac4a2所以_x _,b2a b2 4ac2a即 x1 ,x 2 . b b2 4ac2a b b2 4ac2a说明与建议 说明:以提问和练习的方式让学生回顾旧知识,一方面是培养学生的语言表达能力,另一方面是为了加深学生对配方法的理解
4、,为推导公式法做准备建议:全班同学在练习本上运算,请两名同学在黑板上练习,老师巡回指导,适时点拨,并注意对学困生的帮扶,对表现比较突出的学生,及时进行鼓励素材二 教材母题挖掘教材母题第 36 页例 5用公式法解下列方程:2(1)x2x20;(2)x 22x1.【模型建立】公式法解一元二次方程是体现解一元二次方程的共性的方法,在解答过程中有严格的顺序和方法,其中前提条件是将方程化成一般形式(1)题是一元二次方程的一般形式,各项系数分别为 a1,b1,c2,计算 b24ac 后,选择是否代入公式进行计算(2)题先化为一般形式后,再按(1)的解法求解【变式变形】1用公式法解方程:4x 212x9.答
5、案:x 1x 2 322用公式法解方程:(x1)(2x1)2.答案:x 11,x 2 323用公式法解方程:3x 22 x50.答案:x 1 ,x 2 2 2 173 2 1734用公式法解方程: x2x1.答案:x 1 ,x 2 32 1 73 1 73素材三 考情考向分析命题角度 1 利用公式法求解一元二次方程公式法求解一元二次方程是将解方程的过程程序化,规范性要求较高在代入公式求值前必须通过 b24ac 的值来判断方程解的情况,只有方程有解才能代入求根公式求解例 徐州中考 解方程:x 24x10.答案:x 12 ,x 22 5 5命题角度 2 利用求根公式估算根利用求根公式计算出一元二次
6、方程的根后,结合无理数的估算,估计一元二次方程根的大小例 荆州中考 已知 是一元二次方程 x2x10 的较大的根,则下面对 的估计正确的是( C )A01 B11.5C1.52 D23素材四 教材习题答案P37 练习用公式法解下列方程:(1)x26 x10;(2)2t2 t6;(3)4x23 x1 x2;(4)3x(x3)2( x1)( x1)答案(1) x 32 .636 42 64 22 2(2)x , x12, x2 .11 4264 1494 32(3)x1,2 , x1 x2 .416 448 48 12 12(4)x29 x20,3x .981 82 9732素材五 图书增值练习素
7、材六 数学素养提升斯图姆何时与他的妻子相遇斯图姆是法国数学家,在数学的许多领域都作出了开创性的工作,他身居巴黎,但他常常要去他的出生地风景宜人的瑞士度假。一次,他乘坐的马车从巴黎出发,第一天,马车只走了 10km,以后每天马车都加快速度,即每天比第一天递增 41km,三天之后,在他前方 40km 处的妻子也开始了向瑞士进发的旅程,她的马车更慢,每天只走 7 Km,好在以后每天比第一天递增 32km.请问:斯图姆乘坐的马车出发几天后可与妻子乘坐的马车相遇?如果他相遇后仍保留其原来规定的行走速度(即按上面规则变化)前进,他们还会相遇吗?我们如果设斯图姆的马车出发 x 天后可与妻子乘坐的马车相遇,这
8、时他的马车所走的路程分别为:10,10+ 41,10+2 ,10+3 4110+(x-1) 41.直到相遇,他的马车共走了:(20+ x) 2= 8)79(x(km).同样,他的妻子的马车在此期间走了:14+ 3(x-4) 23= )3(17x( (km).由于他的妻子的马车在他前面的 40km 处,这样可以得到方程: (= (整理得到 5x2-125x+552=0,所以 x= 104582,即 x1 =5.73, x2=19.27这就是说,斯图姆出发 5 天和 19 天后(即第 6 天和第 20 天)都可以与他妻子的马车相遇.在这个问题当中,我们根据题意列出了方程,在求方程的解的时候,利用求根公式法就显得比较简单了.