重积分 第一节重积分的概念与性质 重积分 将定积分概念推广到平面区域上的二元函数或空间区域上的三元函数就得到重积分概念 1重积分的概念与性质 一 引例 例1曲顶柱体的体积 如果是平顶柱体 则体积 底面积 高 以xoy面上的有界闭域D为底 曲面z f x y 为顶 母线平行于z轴的柱面为侧面的柱体 对于曲顶柱体 仿照用定积分研究曲边梯形的方法 分割 取近似 求和 取极限 二重积分 将曲顶柱体任意分成n个小曲顶柱体 每一个近似看作平顶柱体 为的最大直径 例2 变密度物体的质量 设物体位于空间有界闭域上 密度为连续函数 同理 三重积分 1 二重积分定义 存在 且极限值不依赖于对D的分法 也不依赖于在子域内的取法 则称此极限值为函数f x y 在D上的二重积分 二 概念 积分区域 面积微元 1 上述定义可以推广到一般的n重积分 2 如果被积函数在积分区域上连续 则重积分存在 注 三 重积分性质 与定积分类似 以二重积分为例 k为常数 2 三重积分定义 与二重积分类似 积分区域 体积微元 6 估值定理 设M m分别是f x y 在D上的最大值和最小值 则 7 中值定理 若f x y 在D上连续 则在D上至少存在一点使得下式成立 注 上述性质可以推广到一般的n重积分 5 如果在D上 则 特别的 D的面积