1、精选文档容斥问题容斥问题涉及到一个重要原理一一包含与排除原理,也叫容斥原理。即当两个计数部分有重复包含时,为了不重复的计数,应从它们的和中排除重复部分。容斥原理:对n个事物,如果采用两种不同的分类标准,按性质 a分类与性质b分类(如图),那么具有性质a或性质b的事物的个数=Na+Nb-Nab 。练习1、1四(2)班有50名学生,下课后每人都至少做完了一门作业,其中做完语文作业的有35人,做完数学作业的有40人。两种作业都做完的有多少人?练习1、2五(1)班有40名学生,其中25人参加数学小组,23人参加科技小组,有19人两组 都参加了。那么,有多少人两个小组都没有参加?练习2、1某班有36个同
2、学在一项测试中,答对第一题的有 25人,答对第二题的有23人,两题都答对的有15人。问多少个同学两题都答得不对?练习2、2 一个旅行社有员工36人,其中会英语的有24人,会俄语的有18人,两样都不会的有4人。两样都会的有多少人?练习 3、 1 在 1-200 的全部自然数中,既不是4 的倍数也不是5 的倍数的数有多少个?练习 3、 2 在 1-1000 的全部自然数中,既不是5 的倍数也不是7 的倍数的数有多少个?练习 4、 科技节那天,学校的科技室里展出了每个年级学生的科技作品,其中有114 件不是一年级的, 有 96 件不是二年级的, 一、 二年级参展的作品共32 件。 其他年级参展的作品
3、共有多少件?作业题:1 、光明小学举办学生书法展览。学校的橱窗里展出了每个年级学生的书法作品,其中有24 幅不是五年级的,有22 幅不是六年级的,五、六年级参展的书法作品共有10 幅,其他年级参展的书法共有多少幅?2 、有 40 名运动员,其中 25 人会摔跤,有20 人会击剑,有 10 人击剑摔跤都不会,问既会摔跤又会击剑的运动员有多少人?3 、一个班有学生42 人,参加体育代表队的有30 人,参加文艺代表队的有25 人,并且每人都至少参加了一个队,这个班两队都参加的有多少人?4 、 30 名学生中, 8 人学法语, 12 人学西班牙语, 3 人既学法语又学西班牙语,问有多少名学生两种语言都不学?5 、五年级有122 名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩,其中语文成绩优秀的有 65 人,数学优秀的有87 人。语文、数学都优秀的有多少人?6 、学校文艺组每人至少会演奏一种乐器,已知会拉手风琴的有 24 人,会弹电子琴的有17 人,其中两种乐器都会演奏的有 8 人。这个文艺组一共有多少人?7 、在 1 到 200 的全部自然数中,既不是5 的倍数又不是8 的倍数的数有多少个?思考题:有 30 名运动员,其中 18 人会三级跳远, 16 人会撑杆跳高, 10 人三级跳远、撑杆跳高都不会。既会三级跳远又会撑杆跳高的运动员有多少名?可编辑