1、数字图像处理论文题目:图像分割学 院:专业班级:学 号:姓 名:日 期: 2014 年6月成 绩: 任课教师:目录.摘要 22 .正文内容 22.1 图像和数字图像 22.2 图像分割的研究意义 22.3 图像分割的发展现状及趋势 32.4 分割方法与比较 43 .总结及展望 104 .参考文献 10图像分割1 .摘要:图像分割是进行图像理解的基础,是图像工程技术中的一个重要问题。近年来,人们越来越重视图像的分割算法,并期望寻求一种实时性、鲁棒性较好的算法。图像分割技术在当今信息社会中具有极其广泛的用途,特别是在医学图像诊断、卫星遥感图像识别、交通车牌信息识别等等方面尤其有现实意义。目前机器学
2、习技术正越来越多地引领图像分割领域的研究发展,支持向量机正是其中一种较为先进的研究方法。2 .正文内容:2.1图像和数字图像:图像是能为人类视觉所感知的信息形式或人们心目中的有形想象。据统计,在人类接受 的信息中,视觉信息约占 80%,俗语“百闻不如一见”就反映了图像在信息感知中的独到 之处。目前,图像处理技术发展迅速,应用领域也越来越广。图像可以通过各种各样的形式存在,例如:静止图像于运动图像;灰度图像和彩色图 像;平面图像与立体图像等等,但是就其本质而言,我们可将图像分为连续图像和离散图 像。对于图像信号,为了描述的方便和不失一般性,假定图像的指标空间为时间(t)和几何 空间(x, y,
3、z)构成,其值空间为U,其元素u= uR,uG,uB。如果指标空间 D中的所有元素d=(d1,d2,.dn)=(x,y,z,t)均可取连续值,则称此信号为连续图像。相反的,如果 d只能取离散值的图像为离散图像。习惯上,把空间连续(或离散)的图像称为连续(或 离散)图像。数字图像指幅度和空间同时离散(或同时连续的图像)。与模拟图像相比,数字图像具有以下显著特点:1)精度高:目前的计算机技术可以将一幅模拟图像化为任意的二维数组,即数字图像可以 由无限个像素组成,每个像素的亮度可以量化为12位(即4096个灰度级),这样的精度使数字图像与彩色图像的效果相差无几;2)处理方便:由于数字图像本质上是一组
4、数据,所以可以使用计算机对它进行任意方式的 修改,例如,放大、缩小、改变颜色、幅值和删除某一部分等;3)重复性好:模拟图像(例如,照片)即便使用非常好的底片和相纸,也会随着时间的流 逝而褪色、发黄,而数字图像可以储存在光盘中,上百年后再用计算机重现也不会有丝毫 的改变。2.2 图像分割的研究意义:图像分割是计算机图像处理的一个基本问题,是进行许多后续图像分析任务 的先行步骤。图像识别、图像可视化和基于目标的图像压缩都高度依赖图像分 割的结果。因此,图像分割一直得到人们的高度重视,提出了很多分割法。 图像分割时一种重要的图像技术,在不同领域中也具有不同的名称:如目标 轮廓技术,阈值化技术,图像差
5、分技术,目标检测技术,目标识别技术,标 跟踪技术等,这些技术本身或其核心实际上也就是图像分割技术,图像分技 术是图像处理、分析的一项基本内容。图像分割的应用非常广泛,几乎出现在有关图像处理的所有领域,并涉及 各种类型的图像。图像分割在工业自动化、在线产品检验、生产控制、文件图 像处理、保安监视、以及军事、体育、农业工程方面都有广泛的应用。例如在医学中 将核磁共振图像中特定的器官分割出来,用于疾病的诊断;在遥感图像中将农 田分割出来用于估计农产品的产量;图像分割在地质、环保、气象等一系列 领域也有着广泛的应用。MPEG-4的一个重要思想就是基于对象的编码,在编码之前 首先将对象分割出来等。在各种
6、图像应用中,只要需对图像目标进行提取、测量等都离不开图像分割。特性分割的准确性将直接影响后续任务的有性, 因此图像分割具有十分重要的意义。2.3 图像分割的发展现状及趋势:对于图像分割来说,如果不利用关于图像或所研究目标的先验知识,任何仅 仅基于单纯的数学工具的方法都很难取得很好的效果。因此,在很多时候, 人们倾向于重新设计一个针对具体问题的新算法来解决自己所面临的图像分 割问题。然而由于我们只能用图像信息中的某些特征(如灰度差别、彩色差 别、局部纹理差别/局部统计特征或局部区域的频谱特征差别等)去分割区 域,因此各种分割方法必然会带有局限性;同时由于缺乏一个统一的理论作 为基础,同时也缺乏对
7、人类视觉系统机理的深刻认识,我们到目前为止还无 法构造一种能够成功应用于所有图像的统一的图像分割算法。当我们现实中 分割一幅图像时,一般是通过经验和直觉去选择方法,然后经过多次实践来 找到一种最佳的方法。因此在图像分割过程中,有经验的人比较容易选择出 适当的方法,使对不同图像都能得到不错的分割效果。但是当处理的图像十 分庞大时,这种方法就比较困难了。纵观最近几年图像分割技术的发展,我们不难看到以下的趋势8:第一,很多学者致力于将新的概念、新的方 法引入图像分割领域,如这几年新兴的模糊算法,神经网络与遗传算法,小 波算法,粗集理论,数学形态学等理论都先后被应用于图像分割领域,有效 的解决了原有方
8、法的某些不足和缺陷,改善了分割效果,同时也拓宽了人们 的思路。随着基础理论研究的不断发展,这一趋势也会不断发展下去。第二,人们非常重视多种分割算法的结合。综合使用两种或两种以上的方法, 能够在一定程度上克服单一算法在处理某些特定图像的缺陷和不足。如何结 合不同的算法,以及采取何种的结合方式来弥补各自的不足、取得良好的分 割效果将是人们在今后的长时间里都将关注的问题之一。第三,针对特定区域的特殊问题,利用这些领域的专业知识来辅助解决图像分割问日,越来 越多的吸引了研究人员的注意力。相应的,对图像分割做为一个同一的对象 的研究子啊逐渐弱化。医学图像处理中的病理图像分割、工业图像分割、安 全图像处理
9、中的保密信息提取、军事图像处理中的雷达图像分割及卫星图像 分割、交通图像处理中的车牌识别等都是近几年来图像分割领域中讨论较多 的热点问题。2.4 分割方法与比较:1 .检测图像边缘:原理:图像边缘是图像最基本的特征,边缘在图像分析中起着重要作用。所谓边缘是 指图像局部特性的不连续性。灰度或结构等信息的突变处为成为边缘。边缘是一个区域的 结束,也是另一个区域的开始,利用此特征可以分割图像。边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用局部图像微分技术来获得边缘 检测算子。经典的边缘检测方法是对原始图像中像素的某小邻
10、域来构造检测算子。拉普拉斯边缘检测算子是基于二阶导数的边缘检测算子,对噪声敏感。拉普拉斯算子的 改进方式是先对图像进行平滑处理,然后再应用二阶倒数的边缘检测算子,其代表是拉普 拉斯高斯算子。2 .图像边缘检测的程序I=imread(d.bmp);%I=rgb2gray(I);%m,n=size(I);%r=m+2;,%c=n+2;b=zeros(r,c);%g=zeros(m,n);%d=zeros(3);%t=-1 -1 -1;-1 8 -1;-1-1-1;Result=zeros(3);%须图像矩阵处理,做一个b(2:m+1,2:n+1)=I;%读入原始图像将真彩色图像转化为灰度图像确定图
11、片的的长和宽把图片的长和宽各加 2定义滤波后的数组定义三阶方阵d,为临时矩阵%像框把原图的矩阵放到新的矩阵定义二维数组b,长、宽比I各多2,成为镜框的尺寸定义拉普拉斯算子定义三阶方阵Result ,为运算结果矩阵b中心,它的第一行、最后一行、第11一列、最后一列都是 0,即原图矩阵周围有一圈 0的边缘,好像给图像加一个像框b(1,:)=b(2,:);把第二行的值赋给第一行b(r,:)=b(r-1,:);把倒数第二行的值赋给最后一行b(:,1)=b(:,2);把第二列的值赋给第一列b(:,c尸b(:,c-1);把倒数第二列的值赋给最后一列卿拉普拉斯算子进行滤波for i=1:mfor j=1:n
12、d=b(i:i+2,j:j+2); %从b矩阵中依次取出三阶方阵,赋值给临时矩阵dResult=d.*t; %临时矩阵与拉普拉斯算子点乘,赋值给结果矩阵g(i,j)=sum(sum(Result);结果矩阵中十字线上元素相加,赋值给输出矩阵中相应的位置,即临时矩阵中心元素所对应的位endendthresh=2.6*mean2(abs(g); %设定阈值将图像二值化使边缘清晰J=repmat(logical(uint8(0),m,n); %J(find(gthresh)=1;%figure,subplot(2,2,1),imshow(I);title(%subplot(2,2,2),imshow
13、(J); title(创建数组阈值判断二值化原始图像);显示原图像拉普拉斯边缘检测后的图像);%显示拉普拉斯边缘检测后的图像subplot(2,2,3),imshow(g); title(将拉普拉斯边缘检测二值化后的图像)图像经边缘检测后的 MATLA叁序实现效果图如下:2. Hough变换检测直线:原理:Hough变换用来在图象中查找直线,把直线上点的坐标变换到过点的直线的系 数域,通过利用共线和直线相交的关系,使直线的提取问题转化为计数问题。对于任意两点的直线方程:y=ax+b,由于垂直直线 a为无穷大,我们改用极坐标形式:xcos。+ysin0 = p参数平面为0 , P ,对应不是直线
14、而是正弦曲线使用交点累加器,或交点统计直方图,找出相交线段最多的参数空间的点然后找出该点对应的xy平面的直线线段Hough变换的基本策略是:由图像空间中的边缘数据点去计算参数空间中的参数点的可能轨迹,并在一个累加器中给计算出的参考点计数,最后选出峰值。Hough变换法主要优点是受共线点的间隙和噪声影响较小。对于激光测距仪采集的一帧数据进行哈夫变换处理可将数据点集按线段分成若干簇。图像边缘检测的程序:拉普拉斯边缘检测程序如上。Hough检测:I=imread(d,tif);g=rgb2gray(I);%图像灰度化J=im2uint8(g);m,n=size(J);for i=1:mfor j=1
15、:n%图像原点在(1,1)处,所以模版从(2,2)处开始计算,在(m-1,n-1)处结束if J(i,j)150;J(i,j)=0;elseJ(i,j)=255;endendenda=180;% Hough变换检测直线,用参数(a, p)坐标空间;角度的值为0 到 180d=round(sqrt(mA2+nA2);图像对角线长度为d的最大值s=zeros(a,2*d);记录(a,p)像应的点的个数z=cell(a,2*d);记录(a,p)像应的点的坐标for i=1:mfor j=1:n图像中的每个点if(J(i,j)=0)只检测图像边缘的黑点,白点不检测for k=1:ap = round(
16、i*cos(pi*k/180)+j*sin(pi*k/180);%寸每个点从1到180度寻迹一遍,取得经过该点的所有直线的p值if(p 0)若p大于0,则将点存储在(d, 2d)空间s(k,d+p)=s(k,d+p)+1;%(a, p)相应的累加器单元加1zk,d+p=zk,d+p,i,j;存储点的坐标elseap=abs(p)+1; %p小于0,则将点存储在(0, d)空间s(k,ap)=s(k,ap)+1;(a, p)相应的累加器单元加1zk,ap=zk,ap,i,j;存储点的坐标endendendendendfor i=1:afor j=1:d*2检查每个累加器单元中存储数量if(s(i
17、,j) 110)设置适当的阈值以保证所检测出的直线清晰,设阈值为110lp=zi,j;提取对应点坐标for k=1:s(i,j)对满足阈值条件的累加器单元中(a, p)对应的所有点进行操I(lp(1,k),lp(2,k),1)=0;I(lp(1,k),lp(2,k),2)=0;I(lp(1,k),lp(2,k),3)=255; %对检测出的点赋蓝色凸显直线endendend end显示原图像);figure(1),imshow(g);title(figure(2),imshow(J);title(二值反转后的图像)figure(3),imshow(I);title(进彳t hough变换显示直
18、线);图像经边缘检测后的MATLA叁序实现效果图如下:同示原图像AO进行hwgh变换显示直线由上述图像可知,对于同一副图像,各种处理方法所得的结果也是不相同的,一阶微分算 子可以得到边缘,但是其边缘不能够连续,而且对某些地方处理的不够到位。双峰法对这 幅图像处理结果比较粗糙,主要是因为该方法对图像要求较高。最小二值法和自适应阈值 法处理结果都比较不错,是图像处理中应用较为广泛和稳定的方法。一般的分水岭分割得 到的处理结果由于方法的原因,产生过分割现象比较频繁,但是经过滤波和合并后,得到 的效果也比较令人满意。而区域生长法由于种子点选取的不同所得到的结果也各不相同, 如上图所选取的种子点所得到的
19、结果就比较差。但是,如本文上面所说,对于不同的图像 所得的处理结果也不同,所以这里的评价也不是绝对的,对于不同的对象,应当看情况而 论。3 .总结及展望:这次数字图像处理实验总共分两个模块:一、图像加强;二、图像增强。完成这次实验也差不多用了一个周的时间来完成它。因为之前很少接触Matlab ,其中的好多语句及函数用法都不是很熟悉。开始做图像处理之前首先要熟练Matlab怎么运行,以及熟练掌握其中的一些语句格式及函数功能。在安装KEIL软件时出现了些小问题也在网上找到解决的方案。之后开始做图像处理实验,开始的图像反转,对数变换,gamm在化相对比较容易一些。将实验结果成功运行之后也真切的感受了
20、一下数字图像处理的用处。在这过程中也遇 到了些小的问题比如:要将彩色图像转化为灰度对象,如何在一个界面显示多幅图像以增 加对比性,如何在图像上加标题经过查阅相关资料也顺利解决了,也在后面的实验中熟 练运用了。在图像均衡化处理的时候花费了很多的时间去学习算法,然后编写自己的程 序。直接调用KEIL已有的函数显示的结果稍微会比自己编写的程序运行出的结果要好一些。实验二的图像分割是整个实验花费时间最多的尤其是在Hough变换上出现了很多问题,无论怎么修改 Hough变换的程序只能显示 Hough变换图,但是就是检测不出所预想的 直线来。然后和同学商量之后先用拉普拉斯边缘检测检测出边缘来,然后二值化是
21、边缘更 加清晰些,因为Hough检测黑线会比白线效果更好一点,所以对二值化后的拉普拉斯图像 进行反转,再用 Hough进行直线检测,并用蓝色将这些线标识出来。通过此次图像处理实验不仅加深了对图像处理相关知识的理解,尤其是Hough变换检测直线,而且对 Matlab软件的使用也进一步熟练了。我想这次实验对我以后进一步学习图 像处理会有很大的帮助。在实验过程中我经常调用Matlab已有的函数程序和自己编写的程序进行结果对比,其中直方图均衡化以及图像分割还是有一些差别的,这说明还是有很多 的改进空间的,尤其是在Hough中,对比是很明显的,所以还需要进一步学习图像处理的一些实用型的处理方法。4 .参
22、考文献:1 .赵春燕,郑永果,王向葵.基于直方图的图像模糊增强算法J.计算机工程,2005,31(12):185-187.2 .基于MATLAB勺二维数字信号频域分析仿真,韦春荣,周永健,黄植功,科技创新导报2008 NO.123 .智能图像处理技术M.李弼程,彭天强,彭波等编著.北京:电子工业出版社,20044 .数字图像增强的方法J.张娜.大众科技,2006,8.5 .图象处理和分析M.章毓晋.北京:清华大学出版社,1999.数字图像处理成绩评定表评定项目内容满分评分总分学习态度学习认真,态度端正,遵守纪律20论文总体情况认真查阅资料,勤学好问,论文研究 的问题有一定的深度,分析解决问题 的能力较强。40论文质文论文正文用到的图像处理原理描述正 确、表达清楚;实验设计思路合理、 实验结果正确;达到论文撰写规定的 要求;图、表、义字表达准确规范,40上交及时。总成绩采用五级分制或百分制。五级分制:优、良、中、及格、/、及格指导教师评语:签名:年 月日13