1、教学内容用替换的策略解决问题授课时间教学目标1、使学生初步学会用“替换”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。2、使学生在对解决实际问题过程的不断反思中,感受“替换”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。课前分析教科书第89-90 页的例 1“练一练”,练习十七第1 题。及准备教学方法多媒体课件。及媒体运用教学预设教学生成一、出示问题,选择策略1、以图文结合的方式呈现例1,要求学生边读边看图。2、引导交流: 题中告诉了我们哪些条件?要求
2、什么问题?大杯与小杯容量的关系还可以怎样表示?3、提问:根据题目给出的条件,求每个小杯和每个大杯的容量,有什么困难?如果 720 毫升果汁全部倒入小杯,而且知道正好倒了几个小杯,你会求出每个小杯的容量吗?4、提出假设:如果把 720 毫升果汁全部倒入小杯,需要几个小杯呢?全部倒入大杯呢?二、自主探索,运用策略1、探索:如果把720 毫升果汁全部倒入小杯,需要几个小杯?结合例题中的示意图提问:(1)一个大杯可以替换成几个小杯?(2)把 1个大杯替换成3 个小杯的依据是什么?(3)由 1个大杯可替换成3 个小杯,你想到了什么?(4)小结:如果把 720 毫升果汁全部倒入小杯,需要(6+3)个小杯。
3、2、探索:如果把720 毫升果汁全部倒入大杯需要几个大杯?( 1)提出问题后,要求让学生看图思考。( 2)交流中明确:将倒入 6 个小杯中的果汁倒入大杯中,根据“小杯的容量是大杯的 1/3 ”,3个小杯的果汁正好可以倒满1 个大杯, 6 个小杯的果汁正好可以倒满2个大杯。( 3)小结:如果把720毫升果汁全部倒入大杯,需要(1+2)个大杯。3、列式解答:引导:根据上面替换的结果,你能求出小杯和大杯的容量各是多少毫升?学生尝试列式解答,交流计算结果。4、检验。引导:求出的结果是否正确?我们可以怎样检验?交流中明确:要看结果是否符合题目中的两个已知条件。学生通过计算进行检验,并完成答句。三、回顾与
4、反思,提升策略提问:在刚才解决问题的过程中,经过哪些步骤?你觉得哪些步骤是关键?你能说说解决这个问题的策略吗?学生交流、汇报。四、拓展应用,巩固策略。1、指导完成“练一练” 。( 1)出示问题,让学生逢主阅读,并要求尝试画出表示题意的草图。( 2)提问:这个问题与例 1 有什么相同的地方?有什么不同的地方?你打算用什么策略来解决这个问题?( 3)如果把 2 个大盒替换成小盒,这时一个就是几个小盒?你还想到些什么?( 4)要求学生根据上述讨论的结果,想办法解决这个问题目。( 5)让学生自主进行检验。( 6)反思小结:解决这个问题的关键是什么?2、课堂作业:做练习十七第1 题。五、全课总结通过这节
5、课的学习,你有什么收获和感想?教用替换的策略解决问题, 对学生来说 , 是创新性的思维。适当地作一些铺垫, 可降学低学习难度 , 也更衬托出运用替换策略的必要性。所以课一开始, 我就出示这两道题:(1)小明把 720 毫升果汁倒入 9个相同的小杯, 正好倒满, 每个小杯的容量评是多少毫升?价(2)小明把 720 毫升果汁倒入3 个相同的大杯, 正好倒满, 每个大杯的容量及是多少毫升?1,把反学生很快就用果汁总量除以杯子总数,就能得到每杯的容量。然后出示例“小杯的容量是大杯的 1/3 ”这个条件没有写上去。思这题还能用果汁总量除以杯子总数吗?几乎异口同声地说:“不能”。学生们都在认真地思考。 在
6、学生的沉思中, 问题和答案都浮于水面刚才倒入的是一种杯子,直接用除法即可,现在倒入了两种容量的杯子,除数究竟是谁无法确定,在学生的提议下“小杯的容量是大杯的1/3 ”被请上“贵宾”席,大家对它格外“尊重”。替换的思想一触即发,把1 个大杯换成 3 个小杯就可解决;把6 个小杯换成 2 个大杯也可。学生们无不为自己的“创举”而兴奋。还使我值得反思的是如何处理好学生思维差异的问题。替换的策略尤其是差数问题的替换, 学生尽管知道替换的方法,但对于替换后总量发生了怎样的变化不少学生模糊不清,学生之间的差异较大。如何协调这种差异, 一是借助多媒体通过动态的演示让学生明白替换前后的变化,一是给学生时间和鼓
7、励。在做“练一练”的练习中,我发现把5 个小盒替换成5 个大盒总量增加5 个 8 个小球,有的学生不甚理解,有一位学生的列式是100 5 8,显然她不理解。我把她请上讲台,让她指出图中哪些是100 个,哪些是5 8, 7 个大盒可装多少个小球?不知是这个孩子太紧张了还是仍然没有理解,她还是坚持自己的观点,但从下面学生的眼神中我看到了很多孩子已理解了7 个大盒的容量应该比100 多 40 个小球。在巡视过程中不能正确列式的学生约有1/3 ,能正确列式的约有2/3 我想学生学习的过程中出现错误在所难免,我虽用了动画的演示,能帮助学生理解,但对一小部分孩子还是存在困难, 在以后的练习中一定要关注这些
8、学困生,我们只有本着承认差异,尊重学生的态度才能促进每个学生的发展,才是真正的以生为本教学内容用假设的策略解决问题授课时间1、使学生初步学会用“假设”的策略理解题意、分析数量关系,并能根据问题的特点确定合理的解题步骤。教学目标2、使学生在对解决实际问题过程的不断反思中,感受“假设”策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。课前分析教科书第 91-92 页。及准备教学方法画图法。及媒体运用教学预设教学生成一、出示问题,讨论策略1、出示例2,读题。2、小组讨论:你准备怎样来
9、解决这个问题?用什么策略?3、你准备怎样假设呢?二、自主探索,运用策略。1、出示提问:( 1)如果这10 只船都是大船,那么一共可以做多少人?( 2)50 人与 42 人比较,多出了几人?为什么会多出8 人呢?( 3)有一只小船被当成大船会多出几人?( 4)一共多出8 人,说明有几只小船被当成大船?2、列式计算:3、你还可以怎样假设呢?你能根据以上的提问,用你的假设方法解决问题吗?(小组讨论)4、小组汇报(一) :(1)如果这 10 只船都是小船,那么一共可以做多少人?( 2)30 人与 42 人比较,少了几人?为什么会少12 人呢?( 3)有一只大船被当成小船会少出几人?( 4)一共少 12
10、 人,说明有几只大船被当成小船?( 5)列式计算。5、小组汇报(二) :假设大船与小船都是5 只。要求学生汇报后,全班共同填教科书191 页表格,并解决问题。三、巩固反思,提升策略。练一练1、 学生先读题,独立完成并汇报。如果假都是兔,你能设计这样的四个问题吗?小组讨论完成,并汇报。2、 读题理解题意。提问:要算到怎样才能够解决问题?学生独立完成,并汇报。四、全课总结:这节课我们学了什么本领?你有什么想法或还不懂的地方可以提出来?教运用假设的策略分析数量关系并确定合理的解决步骤是本课的学评关键所在,也是难点所在。上一课学习的例1 用替换的策略解价 决问题,实际上就是假设果汁全都放入大杯或全都放
11、入小杯;及 例 2 假设全都是小船或全都是大船后,也要进行替换才能解决反 问题。本单元的两个例题联系是十分紧密的。因此,课的一开思始设计了与例 1 同类型的复习题:同学们去公园游玩, 老师买了1 张成人票和 4 张儿童票 , 共用了 24 元, 成人票的价格是儿童票的 2 倍, 一张成人票和一张儿童票各是多少元 ?这道题是用儿童票替换成人票,或是用成人票替换儿童票,这种替换其实也是对问题情境的一种假设,这样既复习了旧知又引出了“假设”的策略。出示例 2 后,让学生充分的独立思考的时间,让学生运用画图、列表等学过的策略探究新的问题,思考后再在小组里和全班进行探究、交流,使学生共同学习,共同进步,
12、共同提高,同时比较注重语言表达能力和解决问题思路的训练。引导学生提出不同的假设,使学生在不断反思中感受到“假设”策略解决问题的价值。从作业的反馈中发现学生的正确率要比上节课高,比我预计的要好。但我班的佳佳、小叶等思维比较迟钝的几位学生对“替换” 、“假设”这些问题什么都不懂,做的题目没有对的,看来课堂上对这些学困生的关注,值得我反思教学内容解决问题的策略练习授课时间( 1)使学生在解决实际问题的过程中进一步学会运用替换和假设的策略分析数量关系、确定解题思路,并有效地解决问题。教学目标( 2)使学生在对自己解决实际问题过程的不断反思中,感受替换和假设的策略对于解决特定问题的价值,进一步发展分析、
13、综合和简单推理能力。( 3)使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问的成功体验,提高学好数学的信心。课前分析教科书第 93 页 2-4 题及“你知道吗?”及准备教学方法对比练习。及媒体运用教学预设教学生成一、策略回忆提问:前两节课,我们学习了什么内容?你在解决这些问题的时个有什么诀窍,或说关键是什么?可以讨论一下再回答。二、巩固提升1、练习十七第2 题。 1、读题:2、你准备用什么策略来解决这个问题?3、准备怎样替换?关键是什么?4、学生独立完成并检验。2、练习十七第3 题: 1、读题2、你准备用什么策略来解决这个问题?3、准备怎样假设?关键是什么?4、学生独立完成并
14、检验。3、练习十七第4 题:学生独立完成。完成后同桌说说解题的想法?鼓励学生用不同方法解答。三、你知道吗?一起读一读,你能理解题意吗?你会解答吗?四、全课总结(略)教本节课是在前两节课的基础上, 对替换和假设两种策略的简单实际问题的运用,学旨在学生在解决练习十七的题目的过程中,进一步巩固所学的知识,并能灵活选择合评理的策略解决问题, 增强学生解决问题的策略的意识。在课堂中发现学生对于这两种策略混合在一起的时候, 有时手无足策,很难下手。以我个人认为替换和假设应该是价相通的,并不时绝对的,而是相对的,要求学生灵活运用。对于班上的中下等同学真及是无法解决书上的所有题目, 我采用了有选择的去做。 真不知道其他老师是怎么做的,反让全班同学都能接受、 理解、 消化?我很困惑, 希望通过我这次的反思能和各位同行思发生共鸣,有待我在教学中提高认识。但对于教本中的“你知道吗”鸡兔同笼问题,学生都很感兴趣,激情高涨,也是我课堂达到* 的部分。 (补充说明:我班黑板报后面就是“鸡兔同笼”问题,学生当然有话要说啰!)由此可以说明学生的数学课外阅读对数学思维的培养起着至关重要的作用。