收藏 分享(赏)

高数函数图形的描绘.ppt

上传人:HR专家 文档编号:11902092 上传时间:2021-03-27 格式:PPT 页数:19 大小:1.07MB
下载 相关 举报
高数函数图形的描绘.ppt_第1页
第1页 / 共19页
高数函数图形的描绘.ppt_第2页
第2页 / 共19页
高数函数图形的描绘.ppt_第3页
第3页 / 共19页
高数函数图形的描绘.ppt_第4页
第4页 / 共19页
高数函数图形的描绘.ppt_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、第六节,一、 曲线的渐近线,二、 函数图形的描绘,函数图形的描绘,无渐近线 .,点 M 与某一直线 L 的距离趋于 0,一、 曲线的渐近线,定义 . 若曲线 C上的点M 沿着曲线无限地远离原点,时,则称直线 L 为,曲线C 的渐近线 .,例如, 双曲线,有渐近线,但抛物线,或为“纵坐标差”,1. 水平与铅直渐近线,若,则曲线,有水平渐近线,若,则曲线,有铅直渐近线,例1. 求曲线,的渐近线 .,解:,为水平渐近线;,为铅直渐近线.,2. 斜渐近线,斜渐近线,若,( P76 题14),例2. 求曲线,的渐近线.,解:,又因,为曲线的斜渐近线 .,二、函数图形的描绘,步骤 :,1. 确定函数,的定

2、义域 ,期性 ;,2. 求,并求出,及,3. 列表判别增减及凹凸区间 , 求出极值和拐点 ;,4. 求渐近线 ;,5. 确定某些特殊点 , 描绘函数图形 .,为 0 和不存在,的点 ;,并考察其对称性及周,例3. 描绘,的图形.,解: 1) 定义域为,无对称性及周期性.,2),3),(拐点),4),例4. 描绘方程,的图形.,解: 1),定义域为,2) 求关键点.,原方程两边对 x 求导得,两边对 x 求导得,3) 判别曲线形态,(极大),(极小),4) 求渐近线,为铅直渐近线,无定义,又因,即,5) 求特殊点,为斜渐近线,6)绘图,(极大),(极小),斜渐近线,铅直渐近线,特殊点,例5. 描

3、绘函数,的图形.,解: 1) 定义域为,图形对称于 y 轴.,2) 求关键点,3) 判别曲线形态,(极大),(拐点),为水平渐近线,5) 作图,4) 求渐近线,水平渐近线 ; 垂直渐近线;,内容小结,1. 曲线渐近线的求法,斜渐近线,按作图步骤进行,2. 函数图形的描绘,思考与练习,1. 曲线,(A) 没有渐近线;,(B) 仅有水平渐近线;,(C) 仅有铅直渐近线;,(D) 既有水平渐近线又有铅直渐近线.,提示:,拐点为 ,凸区间是 ,2. 曲线,的凹区间是 ,提示:,及,渐近线 .,P76 14 (2); P169 2 ; 5,作业,第七节,备用题 求笛卡儿叶形线,的渐近线 .,解: 令 y = t x ,代入原方程得曲线的参数方程 :,因,所以笛卡儿叶形线有斜渐近线,叶形线,笛卡儿 叶形线,笛卡儿叶形线,参数的几何意义:,图形在第四象限,图形在第二象限,图形在第一象限,点击图中任意点 动画开始或暂停,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报