收藏 分享(赏)

智爱高中数学 抽象函数的周期与对称轴.doc

上传人:j35w19 文档编号:11657665 上传时间:2020-10-29 格式:DOC 页数:10 大小:302.50KB
下载 相关 举报
智爱高中数学 抽象函数的周期与对称轴.doc_第1页
第1页 / 共10页
智爱高中数学 抽象函数的周期与对称轴.doc_第2页
第2页 / 共10页
智爱高中数学 抽象函数的周期与对称轴.doc_第3页
第3页 / 共10页
智爱高中数学 抽象函数的周期与对称轴.doc_第4页
第4页 / 共10页
智爱高中数学 抽象函数的周期与对称轴.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 1 页 (共 10 页) 2019 年 5 月 3 日星期五 智愛高中數學 抽象函数的周期与对称轴一. 内容:抽象函数的周期与对称轴二. 重点:抽象函数周期与对称轴的相关结论。难点:结论的推导证明,利用结论解决问题。三. 具体内容1. 若 )()Txff则 (f的周期为 T。2. 若 ba则 )x的周期为 ab证:令 )(ff3. )()(xfxf则 的周期 2证:令 )(xff 令 b )ba 由得: (aff )(xaxf bT24. 若 bf则 (f图象的对称轴为 x证:要证原结论成立,只需证 )2()2afba令 xa2

2、代入 ()(xff 则 )2(xbafxb5. 若 )(bf则 的图象,以 )0,(为对称中心 。证:方法一:要证原结论成立只需证 )2( xfxaf令 2ax代入 )(bxf 则 )2()(bafb方法二:设 y它的图象为 CP),(0则 P 关于点 )0,2(a的对称点 ),(0yxP() 0fbfxbfxbaf 分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 2 页 (共 10 页) 2019 年 5 月 3 日星期五 0)(yxf 0)(yxbaf CP【典型例题】例 1 对于 f, R有下列命题。(1)在同一坐标系下,函数 )1(fy与 )1(xf的图象关于直线 1

3、x对称。(2)若 )()(xff且 2ff均成立,则 )(f为偶函数。(3)若 1x恒成立,则 )(为周期函数。(4)若 f为单调增函数,则 xafy( 0且 1a)也为单调增函数,其中正确的为?解:(2) (3 )例 2 若函数 3)()xfR有 )()1(xfxf求 )2(f。解: R, 1ff知 f的图象关于 0,1对称而 3)()axf的对称中心 )0,(aP 则 26312(f例 3 设 f是定义在 R 上的函数, Rx均有 )()xf当1x时 12)(x,求当 时, (f的解析式。解:由 有 )(ff得 4T设 3,则 ,)(24()( xfxfxff 51)(2 1时 5)f例

4、4 已知 )(f是定义在 R 上的函数且满足 1)(f,当,0x时有 2x则(1) f是周期函数且周期为 2(2)当 ,时, )(xf(3) 4350(f其中正确的是?分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 3 页 (共 10 页) 2019 年 5 月 3 日星期五 解:(1) (2 ) (3 )例 5 已知 )(xf满足 )2()(xff, )4()(xff,当 6时, cb2且 13,若 )3(bfm,)(cfn,)1(fp求 m、 n、 p的大小关系?解:由已知得 4T,对称轴 4x 也为一条对称轴 28b 由 13)(f 1346c c fm,)2(fn,

5、)(ffp pmn例 6 定义在 R 上的函数 x既是偶函数又是周期函数,若 )(xf的最小正周期是 ,且当 ,0x时, fsi)(求 )35(f的值。解: 23sin)(232)5( ffff例 7 设 y定义在 R 上, nm, 有 )(fm且当0x时, 1xf(1)求证: )0(且当 0x时, 1)(xf (2)求证: f在 R 上递减。解: (1)在 )(nfn中,令 , 0n得)()(ff 0 10f设 x,则 x令 xm, 代入条件式有 )()(ff而 (f 1)()xff(2)设 21则 01 (12令 xm, xn则 12x代入条件式得)()(1212ff分享智慧泉源 智愛學習

6、 传扬爱心喜乐 Wisdom&Love 第 4 页 (共 10 页) 2019 年 5 月 3 日星期五 即 1)(02xf )(12xff )(xf在 R 上递减【模拟试题】一. 选择1. 已知 )(xf满足 )(3(xff, R且 )(xf是奇函数,若 2)1(f则20f( B )A. B. 2 C. 2 D. 232. 已知 )(f是定义在 R 上的偶函数,且 )(4(ff对任何实数均成立,当 x时, x,当 0398x时, x( C )A. 40 B. C. D. x983. 若函数 )sin()(f, 都有 )6()(ff则)6(f等于( D )A. 0 B. 3 C. 3 D. 3

7、 或4. 函数 )2cos(xy是( C )A. 周期为 的奇函数 B. 周期为 的偶函数 C. 周期为 的奇函数 D. 周期为 4的奇函数5. )sin()(xf的图象关于 y 轴对称的充要条件是( C )A. 2kB. k C. 2kD. k6. 如果 )()(ff且 )(xff则 (f可以是( D )A. xsin B. xcos C. in D. xsin7. )(3)(y为偶函数的充要条件是( B )分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 5 页 (共 10 页) 2019 年 5 月 3 日星期五 A. 32kB. 6kC. 62kD. 6k8. 设 )(

8、xf是 R 上的奇函数, )()(xfxf当 10时, xf)(,则 5.7( B )A. 0.5 B. 5.0 C. 1.5 D. 5.9. 设 cbf2)(, t有 )2()(tftf那么( A )A. )4(1f B. 4)1 C. )1(4ff D. 4ff10. )(xy定义在 R 上,则 (xfy与 )1(xfy的图象关于(D )A. 0对称 B. 0x对称 C. 对称 D. 1对称二. 填空1. )(xf是 R 上的奇函数,且 )(2(xff,则 )3(2)(fff230 。2. 函数)sin(y的图象的对称轴中最靠近 y 轴的是 。 1x3. )(xf为奇函数,且当 x时, 2

9、)(xf则当 0时 )(f 。 24. 偶函数 f的定义域为 R,且在 0,上是增函数,则(1))1()43(2af(2 ))1()43(2aff(3)f(4 )中正确的是 (2) 。三. 解答题1. 设 )(xf是定义在 R 上的偶函数,图象关于 1x对称, 1x、21,0都有 )()2121fxf且 0af 分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 6 页 (共 10 页) 2019 年 5 月 3 日星期五 (1)求 )2(f、 41f(2)证明: )(xf是周期函数解:(1) ,0,1x都有 )(2121xf )2()(ff ,0x 2)(ff 21)(af,

10、41()f 41)(af(2)由已知 x关于 对称 ()xfxf即 )(ff, R 又由 是偶函数知 ff, Rx )(, 将上式中 以 代换得 )2() xf是 R 上的周期函数,且 2 是它的一个周期2. 如果函数 y的图象关于 ax和 )(b都对称,证明这个函数满足 )()(2fbaf证: 关于 a和 b对称 xfxf, )2(ff )(令 Ax,则 Abax)(2 2fAf即 )fbaf3. 已知 cbx对任意实数 t 都有 1(ttf,比较)1(f与 f的大小。解:由 )1()tft知抛物线 cbxf2)(的对称轴是 1 23(f而 根据)x在 ),(上是增函数得 )23(ff即 )

11、2(ff4. 定义在实数集上的函数 xf,对一切实数 x 都有 1x成立,若方程 0(f仅有 101 个不同实根,求所有实根之和。分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 7 页 (共 10 页) 2019 年 5 月 3 日星期五 解:设 xu2即 u )3()uff R有 3()xff 所有实根之和为 2301注:一个结论:设 y, R都有 )2()xaf且 (f有 k 个实根 2k,则所有实根之和为 k分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 8 页 (共 10 页) 2019 年 5 月 3 日星期五 练 习一. 选择1. 已知 )(xf

12、满足 )(3(xff, R且 )(xf是奇函数,若 2)1(f则20f( )A. B. 2 C. 2 D. 232. 已知 )(f是定义在 R 上的偶函数,且 )(4(ff对任何实数均成立,当 x时, x,当 0398x时, x( )A. 40 B. C. D. 983. 若函数 )sin()(f, 都有 )6()(xff则)6(f等于( )A. 0 B. 3 C. D. 3 或 4. 函数 )2cos(xy是( )A. 周期为 的奇函数 B. 周期为 的偶函数 C. 周期为 的奇函数 D. 周期为 4的奇函数5. )sin()(xf的图象关于 y 轴对称的充要条件是( )A. 2kB. k

13、C.2kD. k6. 如果 )()(ff且 )(xff则 (f可以是( )A. xsin B. xcos C. in D. xsin7. )(3)(y为偶函数的充要条件是( )A. 2kB. 6kC. 62kD. 6k8. 设 )(xf是 R 上的奇函数, )()(xfxf当 10时, xf)(,则 5.7( )A. 0.5 B. 0.5 C. 1.5 D. 1.59. 设 cbf2)(, t有 )2()(tftf那么( )分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 9 页 (共 10 页) 2019 年 5 月 3 日星期五 A. )4(1)2(ff B. )4(2)1

14、(ff C. D. 110. xfy定义在 R 上,则 xfy与 xfy的图象关于( )A. 0对称 B. 0x对称 C. 对称 D. 1对称二. 填空1. )(xf是 R 上的奇函数,且 )(2(xff,则 )3(2)(fff23 。2. 函数)sin(y的图象的对称轴中最靠近 y 轴的是 。3. )(xf为奇函数,且当 0x时, 2)(xf则当 0时 )(xf 。4. 偶函数 的定义域为 R,且在 ,上是增函数,则(1))1()43(2aff(2 ))1()43(2aff(3)(4 )中正确的是 。三. 解答题1. 设 )(xf是定义在 R 上的偶函数,图象关于 1x对称, 1x、21,0都 有 )()2121fxf且 0af(1)求 )(、 4(2)证明: )(xf是周期函数2. 如果函数 xfy的图象关于 x和 b都对称,证明这个函数满足 )()(2baf分享智慧泉源 智愛學習 传扬爱心喜乐 Wisdom&Love 第 10 页 (共 10 页) 2019 年 5 月 3 日星期五 3. 已知 cbxf2)(对任意实数 t 都有 )1()(tftf,比较)21(f与 f的大小。4. 定义在实数集上的函数 )(xf,对一切实数 x 都有 )2()1(xff成立,若方程 0)(xf仅有 101 个不同实根,求所有实根之和。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报