1、精品课件,3.4 生活中的优化问题举例,精品课件,新课引入:,导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题.,1.几何方面的应用,2.物理方面的应用.,3.经济学方面的应用,(面积和体积等的最值),(利润方面最值),(功和功率等最值),精品课件,例1海报版面尺寸的设计 学校或班级举行活动,通常需要张贴海报进行宣传。现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm2,上、下两边各空2dm,左、右两边各空1dm。如何设计海报的尺寸,才能使四周空心面积最小?,解:设版心的高为xdm,则版心的宽为dm,此时四周空白面积为 。,求导数,
2、得,于是宽为,因此,x=16是函数S(x)的极小值,也是最小值点。所以,当版心高为16dm,宽为8dm时,能使四周空白面积最小。,答:当版心高为16dm,宽为8dm时,海报四周空白面积最小。,精品课件,解法二:由解法(一)得,精品课件,问题2:饮料瓶大小对饮料公司利润有影响吗?,你是否注意过,市场上等量的小包装的物品一般比大包装的要贵些?你想从数学上知道它的道理吗?是不是饮料瓶越大,饮料公司的利润越大?,精品课件,例2:某制造商制造并出售球形瓶装饮料.瓶子制造成本是0.8r2分.已知每出售1ml的饮料,可获利0.2分,且瓶子的最大半径为6cm.,)瓶子半径多大时,能使每瓶饮料的 利润最大?)瓶
3、子半径多大时,每瓶饮料的利润最小?,精品课件,解:由于瓶子的半径为,所以每瓶饮料的利润是,令,当,当半径r时,f (r)0它表示 f(r) 单调递增, 即半径越大,利润越高;当半径r时,f (r)0 它表示 f(r) 单调递减, 即半径越大,利润越低,精品课件,1.半径为cm 时,利润最小,这时,表示此种瓶内饮料的利润还不够瓶子的成本,此时利润是负值,半径为cm时,利润最大,未命名.gsp,精品课件,1、当半径为2cm时,利润最小,这时f(2)0,2、当半径为6cm时,利润最大。,从图中可以看出:,从图中,你还能看出什么吗?,精品课件,问题3、磁盘的最大存储量问题,(1) 你知道计算机是如何存
4、储、检索信息的吗?(2) 你知道磁盘的结构吗?,(3)如何使一个圆环状的磁盘存储尽可能多的信息?,精品课件,例3:现有一张半径为R的磁盘,它的存储区是半径介于r与R的环行区域。,是不是r越小,磁盘的存 储量越大?,(2) r为多少时,磁盘具有最大存储量(最外面的磁道不存储任何信息)?,精品课件,解:存储量=磁道数每磁道的比特数,(1) 它是一个关于r的二次函数,从函数的解析式可以判断,不是r越小,磁盘的存储量越大。,(2) 为求f(r)的最大值,先计算,精品课件,解得,精品课件,例4:某种圆柱形的饮料罐的容积一定时,如何确定它的高与底半径,使得所用材料最省?,R,h,解 设圆柱的高为h,底面半
5、径为R.,则表面积为 S(R)=2Rh+2R2.,又V=R2h(定值),即h=2R.,可以判断S(R)只有一个极值点,且是最小值点.,答 罐高与底的直径相等时, 所用材料最省.,精品课件,变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?,精品课件,课堂练习,1用总长为14.8m的钢条制作一个长方体容器的框架,如果所制作的容器的底面的一边比另一边长0.5m,那么高为多少时容器的容积最大?并求出它的最大容积2.课本P104,精品课件,利用导数解决优化问题的基本思路:,优化问题,优化问题的答案,用函数表示的数学问题,用导数解决数学问题,回顾总结,解决优化问题的方法:通过搜集大量的统计数据,建立与其相应的数学模型,再通过研究相应函数的性质,提出优化方案,使问题得到解决在这个过程中,导数往往是一个有利的工具。,精品课件,作业,课本P104 5,6,