1、 毛细管的设计一、 毛细管影响到系统的制冷量及流量匹配,是靠其流动阻力沿管长方向的压力变化来控制制冷剂的流量和保持蒸发器与冷凝器的压力(流量匹配)。当一定过冷度的液体制冷剂进入毛细管后,会沿着流动方向发生压力状态变化,过冷液体随压力降低变成饱和液体称液相段,其压力降基本上成线性变化。二、 确定毛细管长度和制冷剂充灌量的最佳组合才能取得最大的能效比(即节能)。三、 当制冷剂充灌量一定的情况下,随着毛细管长度的增加,制冷量增加,并达到一个最大值,其后随着毛细管长度的增加而制冷量降低。当毛细管长度不变,而制冷剂充灌量增大时,过冷度增加,过热度减小,制冷剂流量增大,制冷量先增大后减小,而功率逐渐增大。
2、因此,当制冷剂充灌量增大时,系统的能效比先增大后减小,存在最大值。四、 模型的设计:一些说明:毛细管的长度L;毛细管的管径D;制冷剂质量流量m;制冷剂流速V,制冷剂密度;(过冷度:凝汽器中汽轮机排汽饱和温度与凝结水温度之差。冷凝温度:是指物质状态由气态转变为液态的临界温度)建立模型:建立如图1毛细管微圆模型:1. 对于稳态流动,即工质流经毛细管是一维绝热均相流动,流动处于紊流区,且制冷剂在流动过程中状态变化是连续的,连续性方程为;式中: 制冷剂密度,kg/;V-制冷剂流速,m/s;2.能量方程:式中:h-制冷剂比焓,J/kg(焓=内能+压强*体积);3动量方程:;式中:p-压强,Pa;L-毛细
3、管管长,m;D-毛细管内径,m;制冷剂流体进入毛细管,开始处于过冷区,比容不变,焓值也不变,由4.动量方程式积分得:;式中:G-质流密度,;下标sc 过冷区参数;下标f 饱和液体参数;下标in 毛细管进口参数;随着制冷剂在毛细管中继续流动时,压力逐渐下降,焓保持不变,流动变为两相流,根据假设对上述方程离散化,则连续性方程为:;式中:-制冷剂质量流量,kg/s;V-制冷剂的比容,;A-毛细管过流截面积,;则能量方程为:;则动量方程为:;当V/v=G是常数时,则有:;再由上述动量方程得出:; 上式中的焓、比容由下式确定,则:,;速度取1,2点间的平均值,即;x-制冷剂干度;下标g表示饱和气体参数。
4、Stoecker方程为: ;是目前毛细管两相区内摩擦阻力系数。Chruchill方程为:;式中: ; Cicchitti方程:;是两相区动力滞带系数。McAdams方程:;Dukler方程:.模型求解:采用以上建立的绝热毛细管长度模型,采用Stoecker方程,取1、2点的平均值,即;再采用Cicchitti方程对制冷剂R22进行计算,计算条件为冷凝温度40,蒸发温度为5,毛细管内径为1.63mm,制冷剂流量为10g/s计算过程如下表:由表 看出,当计算温度到3时,计算值为-0.00050与实际不符合,这说明制冷剂在毛细管中的流动发生了壅塞现象,则可取上一个计算点的2.05365作为该条件下的
5、毛细管管长,并且计算时间非常短。在同样的条件下,采用不同的摩擦阻力系数和动力粘滞系数,对制冷剂R22进行计算,计算过程如表2 由表2看出,当冷凝温度40,蒸发温度5,制冷剂R22,两相区的计算内摩擦阻力系数采用Stoecker模型,动力滞带系数采用Cicchitti方程,绝热毛细管管长计算值2.053;因此模型精确,由此可以看出这两个系数对结果有一定影响。模型的分析: 通过以上模型可以算出不同毛细管内径下制冷剂量随长度的变化(图1);不同过冷度制冷剂量随长度的变化(图2); 不同冷凝温度下制冷剂量随长度的变化(图3); 图1(1-内径2.5mm;2-内径2.0; 图2(1-过冷度4;2-过冷3
6、-内径1.8mm; 4-内径1.6mm) 度2,3-过冷度0) (R22,冷凝温度40,过冷度0) (R22,冷凝温度45,内径2.0mm) 图3(1-冷凝温度45;2-冷凝温度40) (R22,毛细管长度2.0mm;过冷度0)分析结论:毛细管在同内径下,制冷剂流量越大管长越短;在相同的长度下,流量越大毛细管内径越大,并且不同的内径适用于不同流量;相同制冷剂流量下,随着过冷度的增加,毛细管的计算长度增加。在同一毛细管长度下,随着制冷剂流量的增加,制冷剂的过冷度增加。在相同制冷剂流量下,当冷凝温度增加,毛细管的计算长度增加。当毛细管计算长度相同的情况下,随冷凝温度的增加,制冷剂流量有所增加,这就说明制冷剂通过毛细管的压力降增大,说明了当制冷工况发生变化,制冷剂流量要发生变。