收藏 分享(赏)

地下水模型Feflow介绍.ppt

上传人:精品资料 文档编号:11267035 上传时间:2020-03-07 格式:PPT 页数:80 大小:8.99MB
下载 相关 举报
地下水模型Feflow介绍.ppt_第1页
第1页 / 共80页
地下水模型Feflow介绍.ppt_第2页
第2页 / 共80页
地下水模型Feflow介绍.ppt_第3页
第3页 / 共80页
地下水模型Feflow介绍.ppt_第4页
第4页 / 共80页
地下水模型Feflow介绍.ppt_第5页
第5页 / 共80页
点击查看更多>>
资源描述

1、Training Groundwater modeling using FEFLOW 5.3,FEFLOW (Finite Element subsurface FLOW system),is one of the most outstanding software packages for the simulation of flow and mass and/or heat transport processes in saturated and unsaturated porous media.,History,Functionalities,2-D horizontal or vert

2、ical or 3-D1-D/2-D discrete elements for fracture/tube/channel flowFlow, mass and/or heat transportDensity dependent flowSaturated/variably saturated/unsaturated flow and transportGIS interface for data import and exportSeparate tools for georeferencing images (FEMAP), producing plots (FEPLOT/XPLOT)

3、 and fitting parameters for unsaturated flow/sorption (FE-LM)Open programming interface.,Licensing and maintenance,Licensed via hardlock and license manager softwareLicense types:F2: 2D flowFM2 2D flow and mass transportF3 2D/3D flowFM3 2D/3D flow and mass transportFMH3 2D/3D flow, mass and heat tra

4、nsportFMHES Education starter kit (5 limited licenses) - for universities onlySingle seat or network licensesOptional maintenance contracthotline/support servicefree update service,Demonstration Exercise (48 p.)Users Manual (168 p.)Reference Manual (278 p.)White Papers Vol. I (360 p.)White Papers Vo

5、l. II (112 p.)White Papers Vol. III (42 p.)White Papers Vol. IV (122 p.)Online Help,All manuals are available printed as well as on the FEFLOW CD (Adobe Acrobat files *.pdf).,Documentation,Graphical User Interface,Message bar,Working window,Info boxes,Shell menu,Structure,F E F L O W - S h e l l,Mes

6、h Editor,Mesh Generator,Problem Editor,Simulator Kernel,Postprocessor,Interface Manager (IFM),Default File and Directory Structure,Project directory,femdata,supermsh,import+export,results,plot,Finite element problem files (*.fem),Superelement mesh files (*.smh),Import/export files (*.shp, *.trp, *.l

7、in, *.pow.),Results files (*.dar, *.dac),Exported plot data (*.shp, *.lin, *.trp, *.pnt.),File format,ASCII: *.trp, *.pnt, *.lin, *.ply, *.pow, *.dat, *.txt, *.rai, *.smh, *.dar,Binary: *.shp, *.dxf, *.tif, *.dbf,FEFLOW Model files can be saved in Binary or ASCII format:,*.fem finite element model f

8、iles *.dac model results file,FEFLOW Model files saved in ASCII format:,*.smh super element files *.dar reduced model results files,FEFLOW import and export file format:,Training program,Fr. 23rd March 2007,8:30 Introduction by Prof. Kaden 卡登教授 9:00 FEFLOW地下水计算机模型特点 (FEFLOW features ) 10:00 休息 (Brea

9、k) 10:15 FEFLOW操作与建模 (Set up groundwater model with FEFLOW) 12:00 午饭 (Break for Lunch) 13:00 FEFLOW操作 (Step by step using FEFLOW) 14:00 休息 (Break) 14:15 FEFLOW建立二维地下水模型 (Step by step set up 2D groundwater model ) 16:30 第一天培训结束,Training program,Sa. 24th March 2007,8:30 建立二维地下水模型 (Step by step set up

10、2D groundwater model ) 10:00 休息 (Break) 10:15 建立三维地下水模型 (Step by step set up 3D groundwater model ) 12:00 午饭 (Break for Lunch) 13:00 建立溶质迁移模型 (Step by step set up mass transport model ) 14:00 休息 (Break) 14:15 答疑讨论 16:30 第二天培训结束,FEFLOW Training Exercise 骆俊峰 柏林WASY水资源规划及系统研究所,23rd 25th Mar. 2007, Jina

11、n China,中国济南,2007年三月23-25日,Model building,Analysis,Groundwater modeling,Problem,Initial conditionsBoundary conditionsMaterial properties,Model boundariesMeshing/GriddingTemporal discretization,Simulation,Comparison with measurement dataCheck for plausibility,Target,GIS,Problem specification,Define m

12、odel area Data preparation and evaluation Topography (elevation, land use, river etc.) Geology Hydrology, climate data Groundwater extraction / artificial recharge Observation date for groundwater / river considered Contaminant data2D- or 3D Modeling?,Construct hydrogeol. Model,Evaluate available ge

13、ol. Data Identify and specify aquifer system unconfined or confined aquifer one layer or multi-layers Model define top / bottom elevation for each layer considered (unit: m or m NN) Identify hydraulic conductivity for model layer (unit: 10-4 m/s) Porosity (unit: 1, e.g. 0.2 = 20%),Natural groundwate

14、r recharge (unit: 10-4 m/d),模型区概况 Overview of the model area:,垃圾堆放场,污水处理厂,姆格尔湖,抽水井,农田,地表水,城区,森林,图列,Model scenario flow model,地表径流,outflow,GW-recharge,GW-flow direction,GW-extraction,N,入流边界,出流边界,地下水流向,地下水补给,地下水抽水井,GW-recharge (Source 10-4 m/d),Wells 1000 m/d,Fixed head 32.0 m (1st BC),Fixed head 46.0

15、 m (1st BC),初始水头: demo_head_ini.trp,渗流系数 : conduc2d.trp,含水层底板标高 : bot_san1.trp,含水层顶板标高 : demo_relief.trp,含水层顶板 Aquifer top,含水层底板 Aquifer bottom,渗流系数 Conductivity m/s,定水头边界 (1st BC),模型数据 Model data,地下水补给,定水头边界 (1st BC),地下水抽水井,2D 地下水流动模型 2D Model scenario flow model,Steps to 2D model building:,Superme

16、sh design - 模型区初步圈定划分 Mesh generation - 生成有限单元网格 Model type define - 定义模型类型Flow data: 设置流动模型参数Flow initials 设置初始水头: demo_head_ini.trpFlow boundaries 设置边界条件Flow materials 设置模型流场介质水动力参数 Transport data:Transport initialsTransport boundariesTransport Materials Reference data,2D 地下水流动模型建模主要步骤:,模型区离散化 模型区

17、初步圈定划分 (Super mesh) 有限单元网格 (Finite element),地下水模型建模:,底图文件: model_area.lin,demo_wells.pnt,mass_src.lin,文件夹 : WASYFEFLOW 5.3demoexcercise,Mesh generation:,Transport mapping,TMesh,Triangle (interface),Advancing front,2D model projections:,Horizontal projection,Vertical projection,Axisymmetric projectio

18、n,2D transient saturated flow model, but with constant boundary condition,定义地下水模型类:,2D 非稳态 饱和流动模型, 但边界条件为常数, 即不随时间变化,饱和流,非饱和流,非稳态流,定义模型类 2D 平面潜水流动模型,饱和流,流动问题,非稳态流,平面潜水,设置时间控制 Temporal & control data,自动时间步长,初始步长,终止时间,初始时间,设置边界条件 1st类边界条件 定水头边界: (单位: m) 2nd类边界条件 : (单位: 2D为m/d, 3D为m/d) 出流边界设为“ +”值 入流边界

19、设为“ -”值 3rd类边界条件 复合边界: 水头 (单位: m) transfer rate or “leakage factor” (10-4 m/d) 4th 类边界条件 : “单井”边界条件 (单位: m/d) 抽水井设为“ +”值 注水井设为“ -”值All the BC can be defined as constant or time-variable, and can be set with constraints.,地下水模型建模:,设置流动模型参数: 初始条件,地下水模型建模:,设置初始条件: demo_head_ini.trp,地下水模型建模:,设置流动模型参数: 初始

20、条件,Build Computer Model,设置流动模型参数: 边界条件,定水头边界 抽水井边界,GW-recharge (Source 10-4 m/d),Wells 1000 m/d,Fixed head 32.0 m (1st BC),Fixed head 46.0 m (1st BC),初始水头: demo_head_ini.trp,渗流系数 : conduc2d.trp,含水层底板标高 : bot_san1.trp,含水层顶板标高 : demo_relief.trp,含水层顶板 Aquifer top,含水层底板 Aquifer bottom,渗流系数 Conductivity

21、m/s,定水头边界 (1st BC),模型数据 Model data,地下水补给,定水头边界 (1st BC),地下水抽水井,2D 地下水流动模型 2D Model scenario flow model,Boundary conditions flow:,Note: By flux BC + values mean outflow fluxes, whereas values correspond influxesBy well BC + values for pumping wells and values for injection wells,水流模型边界条件类型:,3rd Kind

22、Boundary Condition (Cauchy Type),q = (hOW hGW)q (Infiltrations-/ Exfiltrationsrate) m/d Transferrate (Leakage-Factor) 10-4 1/dhOW Water table in RiverhGW Water table in GroundwaterFor Transferrate : = kf / dkf conductivity of colmation bed layerd thickness of colmation bed layer.,3rd Kind Boundary C

23、ondition (Cauchy Type),Constraint Conditions,Example: Well with minimum hydraulic head constraint,Qbc m/d,hmin m,Q2 m/d Qbc,h m = hmin,Boundary condition (4th kind),Constraint condition,Resulting flux,Boundary condition (1st kind),Note: the algebraic signs for constraint conditions are contrary to t

24、he boundary conditions, i.e., influxes are positive, outfluxes negative!,t0 = 0,t1 t0,输入、内插流场模型参数: 渗流系数k值 : conduc2d.trp 含水层底板标高: bot_san1.trp 含水层顶板标高: demo_relief.trp Porosity 地下水补给、蒸发量 GW recharge,地下水模型建模:,设置流场参数:,地下水模型建模:,输入、内插流场模型参数:,渗流系数k值 Conductivity 10-4 m/s,输入、内插流场模型参数:,含水层底板标高 m,输入、内插流场模型参

25、数:,含水层顶板标高 m,输入、内插流场模型参数:,地下水补给蒸发: 4,输入、内插流场模型参数:,地下水补给蒸发量 10-4 m/d,地下水补给蒸发量 4 10-4 m/d = 146 mm/a,Run simulation,Save results in *.dac file,2) Start simulation,3) View results,3D model,Slice 1,Slice 2,Slice 3,Slice 4,Layer 1 - sand,Layer 2 - clay,Layer 3 - sand,From geological layering to a 3D mode

26、l,demo_relief.trp,Initial head: demo_head_ini.trp,bot_san1.trp,bot_san2.trp,bot_clay.trp,Conductivity: condu2d.trp,Conductivity: 10-6 10-4 m/s,Conductivity: 10 10-4 m/s,Porosity: 0.1,Porosity: 0.01,Porosity: 0.2,Groundwater recharge: recharge_normal_year.ply,Steps to 3D model building:,Supermesh des

27、ign Mesh generation 3D model buildingLayer construct Slice elevation specification3D model / 2D section view or check Model type define Flow data:Flow initials, sliceFlow boundaries, sliceFlow materials, layer Transport data:Transport initials, slice Transport boundaries, sliceTransport Materials, l

28、ayer Reference dataObservation points, sliceObservation point groups, sliceReference distribution,3D model building,1) Dimension definition after meshing,3D model building,2) 3D layer configuration,3D model building,2) 3D layer configuration,3D model building,2) 3D layer configuration,Slice2,3D mode

29、l building,2) 3D layer configuration,3D model building,2) 3D layer configuration,Slice 3,3D model building,2) 3D layer configuration,3D model building,2) 3D layer configuration,Slice 4,3D model building,2) 3D layer configuration,Model type definition:,Model type definition:,Set flow data to layer 1

30、(aquifer 1),Import / Interpolation of Kx-value “condc2d.trp”Copy Kx to Ky & KzSet porosity global with 0.1 Set groundwater recharge with “join” funktion “recharge_normal_year.ply”,Set flow data to layer 2 (aquitard),Set Kx-value global with 1e-6 Copy Kx to Ky & Kz Set porosity global with 0.01,Set f

31、low data to layer 3 (aquifer 2),Set Kx-value global with 10 Copy Kx to Ky & Kz Set porosity global with 0.2,Set reference data allowing to compare simulated and measured values,Set observation points (slice-related) for observation wells Set observation point groups (slice-related) for water balance

32、 Set reference data (slice-related) for known area data Set section for 2D cross section show,Set reference data,For head observation (points),For flux observation (nodes),e.g. as aerial reference head distribution,Slice-related,Model calibration / verification based on,observed values from observat

33、ion wellsWater balance analysis known Isolines of groundwater levelsComparison of known with modeled values,Postprocessor,Load a FEFLOW-result file *.dac,Browse results saved,View results selected time,Water balance analysis,Spatial/temporal analysis,Save results as *.dar,Create *.fem from *.dac,Mod

34、el scenario transport model,inflow,outflow,GW-recharge,GW-flow direction,GW-extraction,contaminate,Contaminant transport modeling,Processes: AdvectionMolecular diffusionDispersionNumerical (artificial) dispersion,Processes: AdsorptionDecayReaction (available up FEFLOW 5.2),Conservative transport con

35、sidering,Non conservative transport considering additional,Contaminant transport,Advective Transport,Real Transport,Extend a flow model to a transport model,Transport data:Transport initials, slice Transport boundaries, sliceTransport Materials, layer,One species transport - concentration,Boundary c

36、onditions mass transport:,Initial concentration for mass transport:,Transport Materials: Porosity (unit 1) depending on aquifer and aquitard typeDispersivity (unit m) Langitudinal dispersivity (along mass flux direction) Transerve dispersivity normal to mass flux direction Sorption (unit 1)depending

37、 on aquifer and aquitard typeDecay (10-4 1/s)Reaction (available to multi species only),Contaminant transport modeling,Note: Red coloured are required minimally.,Problems: Oscillations can occur due to temporal and spatial discretizationSolution for oscillations:fine meshing (Peclet number 2)damping

38、 techniques in space (upwind) and time (FE/BE)NOTE: All damping techniques add numerical (artificial) dispersion!,Contaminant transport modeling,Numerical methods lowest numerical dispersion, but lowest stability against oscillationsno upwind (GFEM) + AB/TRno upwind (GFEM) + FE/BE shock capture (SC)

39、 + AB/TRshock capture (SC) + FE/BE streamline upwind + AB/TRstreamline upwind + FE/BE full upwind + AB/TRfull upwind + FE/BE highest numerical dispersion, but highest stability against oscillations,Contaminant transport modeling,Compute groundwater flow dynamics in unconfined and confined aquifers a

40、nd multiple free water surface(s); Describe the spatial and temporal distribution of contaminants and/or temperature fields; Estimate the duration and travel time of contaminants in groundwater; Evaluate remediation and decontamination strategies Assist in designing alternatives and effective monito

41、ring schemes; Determine well-source protection zones Estimation and control of strategies for groundwater management Study water excharge between river and groundwater Study saltwater intrusion,Model application,Model application,BASD (Best Adaptation to Stratigraphic Data),Filter development,subdir

42、ectory filtertwo files for each filter: *.flt Description of the filter in ASCII format*.exe or *.awk file for the processingoutput of the filter program: *.fem file formatoutput read by FEFLOW from stdoutcurrently implemented filters:Supermesh: ASCII generate polygon formatFEM problem: ASCII generate polygon format (import only) Sick100 problem files GMS/SMS 2D mesh files (import only ),

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报