收藏 分享(赏)

经济混沌和经济波动的非线性动力学理论.doc

上传人:精品资料 文档编号:11002688 上传时间:2020-01-30 格式:DOC 页数:29 大小:1.76MB
下载 相关 举报
经济混沌和经济波动的非线性动力学理论.doc_第1页
第1页 / 共29页
经济混沌和经济波动的非线性动力学理论.doc_第2页
第2页 / 共29页
经济混沌和经济波动的非线性动力学理论.doc_第3页
第3页 / 共29页
经济混沌和经济波动的非线性动力学理论.doc_第4页
第4页 / 共29页
经济混沌和经济波动的非线性动力学理论.doc_第5页
第5页 / 共29页
点击查看更多>>
资源描述

1、1No. C2000015 2000-10经济混沌和经济波动的非线性动力学理论陈平北大中国经济研究中心美国得克萨斯大学普利高津统计力学和复杂系统研究中心NO.C2000015 2000 年 10 月2经济混沌和经济波动的非线性动力学理论陈平北大中国经济研究中心中国北京大学北大中国经济研究中心,100871Email: 美国得克萨斯大学普利高津统计力学和复杂系统研究中心I为什么要研究经济混沌(11)什么是决定论混沌?在研究经济混沌之前,先得了解什么是决定论混沌(deterministic chaos 简称为混沌)。读者可参考理论物理所的郝柏林教授编的权威文集: 混沌 II (Hao 1990).

2、牛顿力学对动力学机制的研究主要基于线性谐振子模型,其主要的运动特征是产生等幅的周期振荡。周期运动的研究在科学和工程上获得广泛的应用。分析周期运动的主要方法是频譜分析。统计物理和信息论对随机过程的研究发展了线性白噪声模型,其主要的特征是产生振幅无规则,时间序列不相关的无序扰动。 对短程相关的色噪声可以用线性迭加的白噪声信号来描写。例如,经济学家常用的色噪声模型是线性随机的自回归(AR)模型。分析随机运动的主要方法是相关分析,噪声运动的研究在工程和经济学中有重要的应用。人们一度以为,只有随机过程才能产生不规则运动,但廿十世纪七、八十年代间对决定论混沌的突破性研究发现:非线性的低3维(变量数不多的)

3、决定论系统也会产生振幅貌似无规、但周期结构复杂的动力学行为。所以“混沌”的其他提法又叫“复杂周期”,“非线性振子”。和无序噪声相比,混沌是更高层次的动力学的复杂结构。混沌现象的理论和实验研究在物理学、化学、生物学、天体物理、气象学以及神经生理学等广泛领域获得重要进展,但在经济学中遇到严重困难。(12)研究经济混沌的意义和困难在现实世界中,非线性现象远比线性现象广泛,经济问题更是这样。但是经济混沌的研究遇到双重的困难。在理论上,经典和量子力学的框架都可以包容非线性的混沌机制,但微观经济学的公理体系的凸性函数要求,却排除了混沌机制存在的余地。计量经济学家多数怀疑强噪声下混沌存在的可能性。数理经济学

4、和计量经济学偏爱离散时间的差分方程,又使多数经济学家只考虑白混沌模型,而忽视色混沌模型应用的可能(Benhabib 1992)。色混沌在这里指连续时间的非线性振子。“色”指一个有 主 峰 而 非 平 坦 ( 白 色 ) 的 频 谱 。在经验分析上,经济混沌的探测有三重困难:其一,非线性分析方法要求大量噪声水平很低的数据,经济数据不但短,而且噪声水平很高;其二,经济观察和天文观察类似,难以做可控制可重复的实验来验证特定的理论模型;更难的是,经济活动是人的行为,动力学系统的时间尺度和观察者相近。所以经济主体和经济结构随时间的演变难以忽略。时间序列的非稳态性质使目前常用的稳态时间序列分析方法难以应用

5、。这是为什么经济混沌的研究比自然科学更为困难。我们重点研究宏观经济运动,因为发达国家的市场经济周期的观察积累了大量数据(Zarnowitz, 1992)。我们在 1985 年首先从美国货币指数中发现经济混沌的经验证据,建立描写复杂经济波动的软边界振子模型 (Chen 1988)。我们在 1994 年进一步找到将经济增长和波动分解,将噪声和信号分解研究的有效方法,从而在各种代表性的美国宏观经济指数中发现经济混沌的普遍证据4(Chen 1996a,b)。由于目前中国的经济统计数据的收集和整理还不够充分,我们的例证主要取之于美国的数据。但其可能的应用对中国问题同样有潜在的可能。我们在这篇短文中简要介

6、绍我们在非线性宏观经济波动理论中的进展。(Hao 1990)读者可以参考作者最近出版的论文集(陈平著, 文明分岔、经济混沌、和演化经济学,经济科学出版社, 北京 2000 年版),以作近一步的了解。II经济混沌的理论模型我们应当注意,测量和理论是不可分割的。哪怕简单的测量都阴含着某种数理模型。所以,我们在讨论经济混沌的经验观测前,必须首先审阅可能存在的混沌模型。经济学界首先引进的是最简单的离散时间的混沌模型(Benhabib 1992),例如一维非线性差分方程的逻辑斯蒂(logistic)增长模型(Day 1982, Grandmont, 1985)和二维非线性差分方程的 Henon 模型(B

7、enhabib 1980)。差分方程的数学分析相对简单。其时间序列的频譜类似白噪声,我们称它们为“白混沌”模型。白混沌模型在经验分析上难以应用,因为它的内生周期固定为 1。在实际经济观测中,很难找到对应的例子。经济学界稍后引进的是连续时间维数至少三维的非线性常微分方程组的混沌模型,例如 Rssler 模型 (Rssler 1976, Sterman 1985), 其时间序列的频譜类似色噪声,在噪声背景上出现窄带的尖峰信号,我们称之为“色混沌”模型。混合时间的差分-微分方程也能产生色混沌信号。其不同之处在于其动力学行为更为复杂。因为宏观经济波动的公认周期在 2-10 年左右,所以我们重点区分的对

8、象是色噪声和色混沌摸型。我们先介绍产生噪声和混沌现象的主要模型,然后把它们的图象展示于下,给读者一些直观的了解。(a) AR(2)色噪声模型 - 离散时间的 1 维线性差分方程5(2.1)()2()1()( 2tWctXattX这里,白噪声 W(t) 的定义是:和 (2.2)0)(tW)()(tt对 1947-1992 年间美国真实国内生产总值季度的对数时间序列可以用下述 AR(2)模型来模拟:(2.3)(086.27.)(37.0)1(8.)( tWtXttX(b)Logistic 白混沌模型 - 离散时间的 1 维非线性差分方程(2.4)(1)(4)(tXttX(c)Rssler 色混沌模

9、型 - 连续时间的 3 维非线性常微分方程组 ZYtdX)(2.5)2.0Xtd7.5)(三者产生的时间序列见图 1,它们的相关函数见图 2,它们的相图见图 3。6图1.时间序列对应的模型的解的比较。其时间单位是任意的。(a) AR(2) 模型;(b) Logistic 模型; (c) Rssler 模型。7表面看来,只要给定适当的尺度来标度实际的时间序列,它们都可用来描述经济波动。进一步的检验将揭开它们之间的动力学差别。图2.比较三个模型解的自相关函数, 数据点为1000。时间单位和图1同。我们已知道周期运动的自相关函数表现出周期特征,白噪声的自相关函数则是一个急剧衰减的 delta 函数。

10、AR(2)过程的自相关序列很快衰减为微小的扰动; Logistic 白混沌的自相关序列看起来与白噪声一样; Rssler 表现出指数衰减的周期振荡,89图3.三种模型的相图 X(t+T) 对 X(t), 点数 N=1000。(a) AR(2)模型,T=20; (b) Logistic 模型,T=1;(c) Rssler 模型,T=1, t=0.05。相图为 X(t+T) 对 X(t)的二维相空间,给时间序列画出清楚的动力学图象。对存在不动点解的动力学系统,只需相空间中的 1点(零维吸引子)来表示。周期解的相图是一个闭环(1 维吸引子)图 3 表示了三种模型的相图:色噪声、白混沌、和色混沌。图

11、3a 中近乎均匀分布的云状点图十分接近于白噪声的相图图3b 中的拱形图象是一维单峰的白混沌的特征。图 3c 中的螺旋形相图是典型的分维奇怪吸引子(strange attractor),它的游走轨迹不同于周期性循环。图 4 给出 Rssler 奇怪吸引子在 3 维空间中显示的复杂周期运动。其振幅大小和周期长短都不唯一,但也不发散。这是奇怪吸引子的特征。-10 010 20 -20 -100 100102030YXRossler AttractorZ图 4。Rssler 奇怪吸引子在 3 维空间的复杂周期运动。这里简单介绍几个数学名词。我们知道,通常的几何体,面积是边长的二次方,体积是通常的几何体

12、面积是边长的三次方,10推广到高维空间,体积是边长的整数次方。但分形几何中体积和边长的指数关系是分数而非整数(Mandelbrot, 1977)。例如,Logistic 奇怪吸引子的分维小于 1, 而 Rssler 奇怪吸引子的分维就在 2 和 3 之间。III经济混沌的经验观测(3.1) 分解宏观经济指数中的经济增长趋势和经济波动分量工业化经济运动最显著的特征是,大多数宏观经济指标表现为不断的增长趋势迭加上复杂的波动。数学模型对简单的增长过程和稳态的波动过程有简单的数学模型。所以我们分析宏观经济的通用方法,是将宏观经济指数分解为经济增长趋势和经济波动两个分量。计量经济学的提法是时间序列的趋势

13、消解(detrending)。计 量 经 济 学 中 长 用 的 趋势消解法有三种:一 阶 差 分 滤 波 器FD( first - differencing) , 对数线性趋 势 滤 波 器 LLD(log - linear detrending), 和 HP(Hodrick-Prescott)滤 波 器(Hodrick and Prescott 1981), 三者的差别在时间窗户的长短(Chen 1988, 1996a,b)。假设原始的经济时间序列为 S(t),宏观计量的数据处理惯例将时间序列都作对数变换,得到的时间序列为 L(t),则 L(t)中的增长趋势 G(t) C(t)的常用办法是

14、:(a)一 阶 差 分 法 , 等 价 于 对 数 化 了 的 百 分 增 长 率 :)(1ln)()1()( tStLttXFD (3.1)(b)对数线性趋 势 法 , 先 用 线 性 回 归 法 取 对 数 线 性 趋 势 ,它 等 价 于 指 数 固 定 的 增 长 趋 势 。11)()(ln)()(,)(10 tGtStGtLXtktG LDLDDLD (3.2a) )exp(,)(exp)( 0010 kSttSt LD(3.2b)即S(t) = S0 exp ( k1 t) exp ( X(t) )(3.2c)(c) HP 滤波器是 L(t) 的一个线性变换 , 它从原始不光滑的时

15、间序列L(t)找出一个光滑的时间序列G(t),算法是让下述目标函数的极小化,对月度数据的滤波参数 为 1600:(3.3a) NtNt tGtGtL1 212 )1()()()(3.3b)()(tXHP我们对宏观经济指数分析的重点是趋势消解之后的波动分量,计量经济学叫残差。我们将看到 的主要成分是)(1ln)(tStXFD色噪声、多数宏观指数其 的主要成分是色混沌,少数宏观tHP指数其 的主要成分是色混沌信号。)(tXLD按照信号处理理论的时频测不准原理,时间和频率不能同时测准。时间上的更高分辨率是以牺牲频率的分辨率为代价的。这三种趋势消解法以 FD 的时间窗户最短,仅一个数据记录的时间单位。

16、例如,对月度数据而言,其时间窗户为 1 个月。LLD 的时间窗户最长,为整个时间序列的长度;在我们下面的股市指数中,LLD 的时间窗户为 45 年。H P 滤 波 器 的时间窗户约为 8 年。计量经济学家和金融经济学家偏爱 FD 表象,因为它产生的时间序列看来近于随机过程,和均衡经济学的有效市场理论的信念比较接近。宏观经济学家偏爱 LLD 表象,因为 LLD 的对数线性趋势等价于固定指数增长的长期趋势,和新古典增长理论的预言接近。12真实经济周期学派偏爱 HP 表象,因为他们试图综合经济增长理论和经济周期理论:一方面让长期的(非线性)平滑趋势能逼近对数线性趋势,另一方面又使分离出来的波动分量处

17、于商界公认的商业周期的范围(2-10 年)之内。我们对宏观经济指数的广泛研究表明,只有 HP 表象下的波动分量有可靠的色混沌证据。我们下面用最重要的经济周期超前预报指数 美国股市 500 家大企业股价的的价值加权指数,即标准-普尔指数(Standard & Poor 500 Index, 简称为 S&P 500) FSPCOM 月度指数(股票指数)做例证。图 5 显示了三种观测参考系(趋势消解法)下的动态模式。 2.533.544.55logS(t)5.51945 1955 1965 1975 1985 1995log S(t)HPstTrends of FSPCOMln Indexlog-l

18、inear trend(a) G(t)=log S(t)的 HP 趋势 和 LLD 线性对数趋势.LLDc = ,波动分量是指从线性对数趋势消去)(tXLD方法获得的残差。13-0.6-0.4-0.200.20.4X(t)0.61945 1955 1965 1975 1985 1995tCycles of FSPCOMln IndexHPcFDLLDc(b)三种消除趋势的参考系下得到的波动分量, ,FDtX)(HPctX)(.LcD-1-0.6-0.20.20.6AC(I)10 20 40 60 80 100IAutocorrelations of FSPCOMln CyclesHPcFDLL

19、D-(c). 三种消除趋势后波动分量的自相关函数。注意观察到的相关长度取决于消除趋势的参照系。图 5. ESPCOM 标 准 普 尔 股 市 月 度 指 数 对 数 序 列 (1947-92)不 同 的 趋 势 消 解 法 (FD, HP, LLD) 和 波 动 分 量 的 涨 落类 型 (N=552)。14从图 5 我们可以发现相关系数和方差的大小同模式取决于作为参照系的趋势的选取方法。消除趋势的不同方法所观测到的经济波动的性质差异很大。FD 观测者得到的波动方差最小,相关周期最短,仅约 8 个月。LLD 观测者得到的波动方差最大,相关周期最长,接近于 29 年。用 HP 方法得到的结果介于

20、两者之间,约为 3 年。(32)在时频空间中分离随机噪声和决定论周期我们引入时间频率分析来分析非稳态时间序列(Qian and Chen 1996)。在二维的离散的时间频率空间的时变滤波器可以比通常的线性滤波器更有效地分离噪声和周期信号。二维时频空间的基函数是由高斯函数调制的谐振波包。图6给出原始和滤波后的HP波动分量。图7的相图显示了滤过的HP波动分量具有决定论的模式特征。-4-20241945 1955 1965X(t)1975 1985 1995t滤 过 的 和 原 始 的 HP周 期XoXg图 6. 滤过的 FSPCOM HP 周期 Xg与未滤过的原始 HP 周期序列 Xo十分接近。X

21、 g和 Xo间的相关系数是 0.85。两者的标准差的比率是 82.8%。X g的分型相关维数(fractal correlation dimension)是 2.5。相关维数是分数而非整数,这是奇怪吸引子即决定论混沌的典型特征。15-0.3-0.2-0.100.10.20.3X(t+T)-0.3 -0.2 -0.1 0 0.1 0.2 0.3X(t)FSPCOM原 始 的 HP周 期(a). 原始的 HP 周期的相图-0.3-0.2-0.100.10.20.3-0.3X(t+T)-0.2 -0.1 0 0.1 0.2 0.3X(t)FSPCOM滤 过 的 HP周 期(b). 滤过的 HP 周期

22、的相图图 7. FSPCOM HP 的相图。时间滞后 T=60 个月。滤过的 FSPCOM HP 波动分量的相图显示出决定论的螺旋模式。这是色混沌的一个典型特征。用非线性动力学中的标准检验方法,可以对滤过的时间序列给出决定论混沌存的其他证据。16(3.3)结构稳定性和市场韧性市场经济的结构稳定性很难用线性动力学的框架解释。例如,线性加速乘子模型的周期解和单位根模型中的持续冲击解只有边际稳定性(Samuelson 1939, Nelson and Plosser 1982)。萨缪尔森的线性加速乘子模型的二阶差分方程是:(3.4)YabaYGttt()1012它在参数空间的结构稳定性,可以参见图

23、8。图 8.萨缪尔森线性加速乘子模型在参数空间中的稳定性模式。(这里 Y 是收入)。ST 代表稳定解;DO 代表衰减振荡;EO 代表发散振荡;EP 是发散解,PO 代表周期振荡。我们可以发现周期解 PO 处在在 DO 和 EO 的边界线上。参数空间中对边界线的微小偏离将导致周期振荡蜕变为衰减或发散振荡。经济计量学随机过程中的单位根模型,使所谓的持续冲击解在单位圆上只有相似的边际稳定性。在线性模型中,结构性的不稳定17是普遍的基本问题。在真实世界中,市场经济在各种冲击下都表现出很强的韧性。将图 9 的“软弹振子”( soft-bouncing oscillator) 或“高速公路模型” (Che

24、n 1988)和图 8 的萨缪尔森模型相比,可以看出参数空间的结构不稳定问题在非线性动力学模型中不复存在,这也正是线性模型为什么应该被非线性模型代替的原因。软弹振子的一阶延迟微分方程为: dXtatbXteXt()()()2(3.5)。(a) 方程(3.5)的参数空间。18(b)(a)图 中方框区的放大。图 9.非线性软弹振子模型在参数空间的稳定性模式。这里,ST 表示稳态解;C1、C2、C3 分别是周期 1、周期 2、和周期 3 的极限环解,C H 则 为 连 续 时 间 的 色 混 沌 解 。 (b)是(a)中复杂周期 CP 区的局 域 放 大 图 ,不同周期的极限环和混沌区域带交替出现。

25、我 们 经 常 可 以 观 察 到 经 济 政 策 中 存 在 着 各 种 各 样 的 非 线 性 约束 : 诸 多 经 济 活 动 如 投资、货币控制和汇率都设有控制目标的上限和下限。但上下限又是弹性而非硬性的。这种“软弹现象”在经济行为中非常典型,类似于美国高速公路上的时速限制。用延迟微分方程表示的软边界振子是一个比线性模型,包括协振子和随机游走模型更好的描述经济周期的方法。非线性控制中的过度反应(over-shooting) 和时间延迟是产生复杂经济周期的根源。软弹振子的色混沌模型对持续波动和机制突变(regime switch)给出一个统一的解释。由 于 每 一 种 运 动 模 式 对

26、 应 于 参 数 空 间 中 一19个 有 限 的 范 围 , 那 么 只 要 参 数 移 动 没 有 越 出 边 界 , 在 面 临 外 部冲 击 时 , 一 种 模 式 的 稳 定 性 是 可 以 保 持 下 去 的 。 当 参 数 空 间 中的 参 数 移 动 越 界 进 入 另 外 一 种 机 制 时 , 机 制 突变便 会 发 生 , 即所 谓 的 量 变 到 质 变 。(3.4)色混沌、生物钟、和经济诊断市场经济在内外不稳定冲击下的韧性,可以由色混沌的特征频率稳定性来刻画。除了股市指数外,持续波动可以从 HP 滤波器消除趋势之后的宏观总体指标的波动分量中广泛地观察到,包括国内生产总

27、值、国内投资、短期和长期利率、货币供给指数、货币流通速度、消费者价格指数和失业率等。在时频表象中可以定义特征频率或者相应的特征周期P c。图10 显示在经济周期的范围内存在一个连续平稳的特征频率。它们的特征周期的范围大致在3到5年之间,和 NBER(美国经济研究局)界定的典型经济周期的时间尺度在同一量级。噪声在波动信号中所占的比例约 2050。当然,并非所有的宏观经济指标的行为都有类似于生物钟的稳定的特征周期。短期利率和外币汇率的噪声成分很大;相比之下,长期利率的时间频率现出非常稳定的模式。这些时频特点的发现对宏观经济研究有宝贵的参考价值。051015201945 1955 1965Pc(yr

28、)1975 1985 1995t特 征 周 期 的 时 间 路 径 Pc(t)FSPCOMhpcFSDXPhpc图 10. FSPCOM HP 和 FSDXP HP 波动分量(标准普尔的回报率)的特征周期的历史路径。20经济指标特征频率的稳定性是非常显著的。频率的相对变异度可以用其瞬时频率的标准差和瞬时频率的平均值之比来度量。大多 数 指 标 的 频率相对变异度都 低 于 50%。 令人惊异的是,在面临外在冲击和内在不稳定时大多数宏 观 指 标 的 特征频率非常稳定,可见市场的韧性是很显著的。FSPCOM 和 FSDXP 的 HP 波动分量的平均特征周期分别是 3.6 和 3.5。它们的频率相

29、对变异度,分别是 26 和 28 %。1987 年 10 月股票市场崩盘导致标准普尔指数在两个月内幅度下跌 23%,但其特征周期仅变动 6。经济色混沌现象表明宏观经济波动更象生物钟而非色噪声。宏观经济指数 HP 波动分量的时频演化图可以作为经济诊断的“听诊器”- 判断经济剧烈变动的性质究竟是内生不稳定性还是外来冲击所引起。新古典经济学家们认为经济波动的模式都很相似,假如经济波动都是由随机噪声驱动的。我们比较特征周期的历史路径,发现不同宏观经济指数波动的模式并不一样。例如,投资消费的硬周期和货币指数的软周期有明显的差异。宏观经济指数的时间频率模式类似生物有机体,例如循环和消化系统的特征频率就不一

30、样。经 济 诊 断 可 以 帮 助 我 们 识 别 具 体 的 频 移 原 因 , 如 60 年代的军备竞赛、70 年代的越南战争、80 年代的政策调整和其它的一些事件,都可能造成经济波动的频移。这些频移模式对研究结构变化提供了非常宝贵的信息。这为发展经济诊断和政策研究开拓了新的途经。我们用石油价格冲击和股票市场崩溃这两个自然实验证明,时频表象显示的经济钟的有机图象比白噪声的无序图象揭示了更多的结构性信息(图 11)。1973年10月的石油价格冲击之前,股票市场指数的特征周期从1971年后大致稳定在4.3年的水平上。石油价格冲击之后,HP周期的特征周期缩短为3.9年。显然,石油价格冲击是导致股

31、票市场频率变化的外部原因。21对1987年10月的股票市场崩盘,情况就有所不同。在股市崩盘前几个月,特征频率早就出现频移。在股票市场崩盘后引发的 FSPCOM 的周期变动有两个月的延滞。这使我们有理由推论:股票市场的崩盘是内生泡沫而不是外生冲击引起的。市场的有机结构在生存上类似生命的有机体。生命节律的变动可以对环境冲击作出适应性反应,也能对内生变动作出相应的调整。051015201970 1971 1972Pc(yr)1973 1974 1975t石 油 价 格 冲 击 的 路 径 (Oct. 1973)FSPCOMhpcFSDXPhpc(a)在 1973 年 10 月石油价格冲击之后,FSD

32、XP 和FSPCOM 的特征周期都发生了移动。它意味着股票市场的相应变化是由外在的冲击引起的。051015201985 1986 1987Pc(yr)1988 1989 1990t股 票 市 场 崩 盘 的 预 示 (Oct. 1987)FSPCOMhpcFSDXPhpc(b)在 1987 年 10 月股票市场崩盘之前几个月,FSPCOM 和 FSDXP 的特征周期已经发生了移动。股市崩盘后两22个月特征周期再次移动。这段历史表明股市的崩盘源于内生的不稳定性。图 11. 股市指数特征周期的移动模式和原因诊断IV为什么均衡经济学家对经济混沌理论的反对和怀疑是缺少根据的?新古典经济学的主题是简单性

33、和稳定性。均衡有序被刻画为微观经济学的均匀结构和宏观计量学的随机噪声。但是均衡理论未能回答另一方面的基本问题:经济不稳定性的来源与社会多样性的起因。不少经济学家早就认识到均衡理论的原则和持续经济波动(也称经济周期)的存在不能相容。某些均衡经济学家试图调和两者的矛盾。最著名的模型有两个:弗里希的噪声驱动阻尼振子模型和卢卡斯的微观基础和理性预期模型。两者都获得诺贝尔经济学奖。我们将证明两者都无法解释观察到的宏观经济波动。(4.1)噪声驱动经济周期的弗里希幻想和第二类永动机经济周期理论中所谓的弗里希模型对宏观计量经济学和真实经济周期学派有着决定性的影响。在1933年召开的一次非正式会议中,弗里希建议

34、用阻尼振子模型来描述市场经济的稳定性;他进一步宣称持续性的经济周期可以由持续的随机冲击来维持,但他没有给出任何解析的证明(Frisch 1933)。弗里希提出的问题在物理学文献中叫做谐振子的布朗运动问题。物理学家在1930年给出了这个问题的基本解,并且在1940年代得到了解析解(Uhlenbeck and Ornstein 1930)。他们的结论和弗里希幻想相反:谐振子的振荡将很快的以指数方式衰减。持续性周期不能由随机冲击来维持。对于美国真实GDP的布朗谐振子模型的简单计算表明,噪声驱动的阻尼谐振子在一至二个周期内将停止振荡。在FD参照系23下,我们需要一个外部的驱动力量,这个驱动力的波动幅度

35、大约是美国经济波动幅度的1.3 倍,这样巨大的外部经济噪声源是难以想象的(Chen 1999a)。由于某些不得而知的原因,弗里希远在1934年就悄然放弃了他的模型。经济学的第一个诺贝尔奖颁给了一个不但没有被证明,而且可以证伪的理论。如果弗瑞希能够使用随机冲击来维持持续的波动,那么这将意味着热力学中不允许的第二类永动机能被制造出来。计量经济学家怎么能够超越热力学的法则呢?(4.2) 大数法则和卢卡斯谬见 - 宏观波动和理性预期缺乏微观基础新古典经济学倡导建立宏观经济学的微观基础。他们对从1970年代以来的宏观经济学有着重要的影响。卢卡斯认为在家庭和厂商层次的独立的小涨落能够放大为宏观经济中的大波

36、动 (Lucas 1981)。具体地讲,劳动者在生产和闲暇间的即时替代加总后将产生巨大的就业波动。他完全忽略了微观加总时大数法则的统计规律。 对N个概率分布相同的统计独立变量组成的系统,其个体的均值是 ,标准差是 。则加总的均值是 N,方差是N 2。当变量的范围为正,均值不为零时,我们可以把标准差和均值的比率定义为涨落的相对幅度。大约是 的量级。为了简单起见,我们1把这个规律称为大数法则。可见,N越大,涨落的相对幅度越小。能否通过微观机制来解释宏观运动是一个结构性问题。例如,在室温和大气压力下,每克分子气体大约有10 24个分子。由热运动引起的密度变化的相对幅度大约只有 10 -12,可以忽略

37、不计(Reif 1964)。这就是为什么天气预报用决定论而非随机论的方程来描述的。在宏观经济学和气象动力学的描写之间存在着相似性。 由于非平稳增长,对于涨落的相对幅度的经验测量取决于经济运动的模型和观测经济波动所使用的参考系。美国经济涨落的相24对幅度很大,美国宏观经济指数涨落的相对幅度在 120 的范围。但美国总统微观经济个体N的数字很大,以1980年的统计为例,家庭户数为8 千万,资产超过10万美元的公司3 百万。这些个体微观涨落加总的效果,所能产生的美国宏观经济涨落的相对幅度仅约 0.010.1,比实际值小10 2000 倍!可见在家庭或者工人层次上的微观涨落不能解释失业和产出的大幅波动

38、。劳动市场的宏观波动无法由微观基础的独立涨落来解释。这就否定了卢卡斯的谬论说。他认为像大萧条这样的持续失业也能够由工人的理性选择引发的“自愿失业”来解释。更大的问题是。著名的理性预期假设只能消除而非产生大幅的宏观波动。假如微观个体确实是独立行动,而且未来经济路径理性预期假设下是可预测的,那么套利行为将消除微观个体之间的关连,使大数法则得以生效 (Chen1999b)因此,均衡经济学中有效市场,微观基础,和理性预期的三项假设在逻辑上不能构成一个自洽的理论框架,以解释观测到的宏观经济的相对涨落(Chen 1999b)。真实经济周期学派的代表人模型明确的排除了大数问题。因此,他们的模型不是一个大量微

39、观个体的加总模型。 为了克服大数法则引起的困难,有两种可能的出路:一是研究类似于流体力学中的决定论混沌模型,另一办法是考虑经济组织的中介结构比如金融市场和产业组织,其功能类似生物有机体的循环系统和消化系统 (Goodwin 1990, Chen 1988, 1996a, 1996b, 1999c)。这间接证明宏观经济波动理论以色混沌模型最有希望。(4.3)货币中性和协调成本的问题:李嘉图操作,和非均匀分布李嘉图操作是一个用来验证货币中性的理想实验。我们遵循科学的惯例用创造者的名子给理想实验命名。李嘉图设想一夜之间所有企业和家庭的现金持有量翻一番,他断言这一操作不会改变市场的相对价格。这意味着所

40、有的需求和供给函数都是零阶齐次函数(Leontief 1936)。弗里得曼设想了一个扔钞票的直升飞机的类似装置(Friedman 1992)。他们都忽略了在非平等社会中的收入再分配问题。实际上,只有在财富平均分配的原始经济中,李嘉25图操作才可实行。在现行的政治经济中,李嘉图操作意味着累进的补贴或累退的税收。在民主政治中,它不具有可操作性。 我们发现了货币数据中混沌存在的实证和理论证据,它是对货币中性说的一个极大的挑战(Chen 1988)。(4.4) 理性套利者和不可复制的市场模式:弗里得曼精灵、信息成本和信息模糊弗里得曼精灵是理性的套利者,他们会驱逐导致市场不稳定的投机交易者(Friedm

41、an 1953)。弗里得曼想象一个十分有效的竞争市场,假如有人发现某种赢利的规律,模仿者会立刻加入分享其利润,从而使赢利的机会消失。他由此断言竞争性市场中不存在任何稳定的结构或者可仿效的模式。这种看法是支持有效市场假说或金融市场中的随机游走模型的主要证据。弗里得曼精灵的行为与平衡态热力学中的马克斯韦妖精(Maxwell demon)非常相似。问题出在信息成本上。为了消除任何市场不稳定性,仿效者必须以迅速地获取赢利法则的充分信息。也即弗里得曼精灵需要无限的资源来获取完全的信息。然而,由于信息成本的存在,信息有效市场是不可能的(Grossman and Stiglitz 1980)。除了信息成本问

42、题外,更重要是由非稳定动态系统的复杂性引发的信息模糊性问题。弗里得曼假设模仿者能可靠和迅速地重复成功者的行为模式,其前提不但要求市场运动有稳定的模式,而且要求市场的运动轨道可以被预测和重复。事实上,由于不完全信息(数据有限,噪声很大,和时间延迟使信息收集无法完全)、信息的模糊性(市场竞争者由于利益冲突,往往散布相互矛盾甚致错误的信息)、不可预测的事件(例如金融危机和经济结构的自然演化)和有限的可预测性(例如决定论混沌的情况),市场的有效性是大打折扣的。经济行为中有限理性和信息模糊的根源不仅在人们计算能力的局限性,更在于动态不稳定性导致的难以预测性(Chen 1999c)。V结论:非均衡有序、耗

43、散结构、和经济韧性26非平衡态热力学对理解生命和社会系统的演化过程非常有用。普里高津区分了三种有序结构(Prigogine 1980):孤 立 系 统 中 的无序结构, 是 热 力 学 第 二 定 律 决 定 了 孤 立 系 统 中 的 熵 (无序的量度)趋于极 大 化 ;均衡有序结构,如晶体结构 ,能在与周围交换能量的封闭体系中形成;非均衡有序的耗散结构(dissipative structure),比如任何生物的存活要不断消耗能量,物质,和信息,这种耗散结构只能在保持能量流、物质流和信息流的开放系统中维持(图 12)。很明显,哈密顿(Hamilton)经济模型中的优化方法是均衡有序的表征。

44、而劳动分工和持续经济波动是耗散系统中非均衡有序的典型。(a) 具有均衡结构的封闭系统只与周围环境交换能量。(b)相干有序(coherent structure)只可能存在于开放系统。耗散结构是由能量流,物质流,和负墒流来维持的。图 12. 封闭与开放系统中的均衡与非均衡次序普里高津的耗散结构理论为发展非线性非均衡的经济周期理论打开了道路,使我们能解开大幅、持久、又复杂的经济波动来源之谜。27如果我们从持续经济波动的经验观察出发,那么我们可以在新古典经济学和凯恩斯宏观经济学之外开创演化的新观点。宏观经济的正常状态既不是均衡态(equilibrium),也不是暂时的偏离均衡(disequilibr

45、ium),而是有生命节律结构有序的有机体(organism)。经济波动并非只意味作坏事,因为经济波动能刺激技术进步和结构变迁。经济紧缩会推动过时技术的消亡,而经济高涨则为技术创新铺平了道路 (Schumpeter 1939)。非自愿失业主要是部门内和部门间结构调整的结果。制度结构和产业组织在影响宏观经济运行上起到比微观个人的预期更重要的作用。从有机经济组织的观点出发,就和医生看病那样,可以更好的理解政府政策的有效性和局限性。生物钟的色混沌模型同时具有局部不稳定性和整体稳定性的特点。现实经济中稳定性和适应性这两种貌似冲突的特征可以用非线性模型中经济韧性的概念统一地加以解释。我们相信,非线性经济动

46、力学的发展,将根本改变目前以线性均衡理论为主导的理论经济学的体系和规范。参考文献陈平, 文明分岔、经济混沌、和演化经济学,经济科学出版社,北京(2000 年版),Benhabib, J. Adaptive Monetary Policy and Rational Expectations. Journal of Economic Theory, 23: 261-266 (1980).Benhabib, J. Cycle and Chaos in Economic Equilibrium, Princeton University Press, Princeton (1992).Chen, P.

47、 “Empirical and Theoretical Evidence of Monetary Chaos,” System Dynamics Review, 4, 81-108 (1988). Chen, P.“Trends, Shocks, Persistent Cycles in Evolving Economy: Business Cycle Measurement in Time-Frequency Representation,” in W. A. Barnett, A. P. Kirman, M. Salmon eds., Nonlinear Dynamics and Econ

48、omics, Chapter 13, pp. 307-331, Cambridge University Press, Cambridge (1996a).Chen, P. “Random Walk or Color Chaos on the Stock Market? - Time-Frequency Analysis of S&P Indexes,” Nonlinear Dynamics & Econometrics, 1 (2), 87-103 (1996b).28Chen, P. The Frisch Model of Business Cycles - A Spurious Doct

49、rine, but a Mysterious Success, CCER Working Paper, #E1999-007, Peking University, Beijing, China (1999a).Chen, P. Inquiry into the Micro Foundation of Macro Fluctuations: The Law of Large Numbers and Arbitrage under Rational Expectations, CCER Working Paper, No.E1999014, Peking University (1999b).Chen, P. Complex Dynamics in Economic Organisms: The Origin of Division of Labor and The Nature of Persistent Business Cycles, CCER Working Pa

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报