收藏 分享(赏)

非线性刚性微分方程一类新高效数值方法.doc

上传人:天天快乐 文档编号:1089665 上传时间:2018-06-10 格式:DOC 页数:26 大小:4.20MB
下载 相关 举报
非线性刚性微分方程一类新高效数值方法.doc_第1页
第1页 / 共26页
非线性刚性微分方程一类新高效数值方法.doc_第2页
第2页 / 共26页
非线性刚性微分方程一类新高效数值方法.doc_第3页
第3页 / 共26页
非线性刚性微分方程一类新高效数值方法.doc_第4页
第4页 / 共26页
非线性刚性微分方程一类新高效数值方法.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、2009530A New Class of Ecient Numerical Methodsfor Nonlinear Sti Dierential EquationsCandidate Li LinhaiSupervisor Professor. Huang YunqingCollegeProgramSpecialityDegreeUniversityDateMathematics and Computational ScienceComputational MathematicsNumerical Methods for Dierential EquationsMaster of Scie

2、nceXiang Tan UniversityMay 30, 2009B- EBDFNew BDF NBDF k NBDF kB-kkEBDF k 1kB-EBDF k = 2, 3, ., 8NBDFEBDFNBDFEBDFNBDFB-B- EBDFINBDFAbstractBased on B-theory of numerical methods for nonlinear sti dierential equations,we modify the existing EBDF methods, and construct a new class of ecient numericalm

3、ethods which are known as New BDF methods with abbreviation NBDFs. It is provedthat the k step NBDF method is B-consistent of order k and convergent of order k in theclassical sense, and has the same perfect numerical stability properties as the k-th orderEBDF method, where k = 2, 3, , 8. However, t

4、he k-th order EBDF method has anessential drawback that its Bconsistency order is one less than the convergence order.Fortunately, this drawback is overcome by our New BDF methods constructed.Theoretical analysis and numerical experiments show that for solving nonlinear stiproblems the computational

5、 accuracy and eciency of an NBDF method is usually muchhigher than the corresponding EBDF method of the same order, the latter usually causesorder reduction, but the former usually has observed order closely near to its B-consistencyorder. Therefore, we can conclude that the NBDF methods constructed

6、 in the presentpaper are of importance in practice.Key Words:Nonlinear sti dieretial equations; B-theory; EBDF methods;NBDF methods; accuracy and stability analysisII. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7、. . . . . . . . . . (I)Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (II). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

8、. . . . . . . . . . (1)NBDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(7). . . . . . . . . . . . . . . . . . . . . . . . . .

9、. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (12). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10、. . . . . . . . . . . . . . . . . . (17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(18). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11、 . . . . . . . . . . . . . . . . . . . . . . (20)IIIy (t) = f(t, y(t),(Backward Dierentiation Formula, BDF)(kj=1jyn+kj1)= hf(tn+k, yn+k) (1.1)(y(a) = ,a t b, Rmf : a, b Rm Rm(1.2)y Lipschitz y(t) a t b)DIFSUB( 2) LSODE( 3)BDFBDF 3-6BDF6 BDFA()- BDFBDFEnrightGaussian Runge-Kutta ( 4)8)Radau IIA Runge

12、-Kutta(9-14)( 5-7)BDFEnright1980 Cash (Extended Backward DierentiationFormulae, EBDF( 15) 2-4 A- 5-9 A()-BDFBDFEBDFEBDFGaussianRunge-kutta1983 CashRadau IIA Runge-kutta EnrightEBDFEBDF Modied Extended Backward Dierentiation FormulaeMEBDF( 16)1j yn+j = hk fn+k + hk+1fn+k+1k = 1j (j = 0, , k 1) k k+1

13、1 28 4 17 279 18 728 4008 144 394 96000 26550 600 5756 46800 77940 1200 7545 1189475 1324470 14700- 1120080 14471072 35354480 28187040 235200 112 137 1089 34 16 147- 15981 18 200 1089 48 400 65856 300 1089 147 109760 1089 47040Cash BDFk k +1 EBDFkj=0(k) (k) (k) (1.3)k = 1, 2, ., 8 h 0 yn+j (1.2)y(t)

14、 tn+j y(tn+j) tn+j = tn + jh, tn = a + nh, fn+j = f(tn+j, yn+j)y(t) tn+j y(tn+j) (k)(k) (k)1.1,(k)k k +1 EBDF( 1) 1.1k (k)0 (k)1 (k)2 (k)3 (k)4 (k)5 (k)6 (k)7 (k)8 (k)k (k)k+11 -1 1 32 22 523 231 2223 23319799197 1971 150197 1974 1112501 250121242501 25011 16442501 2501514919292514919 14919187001491

15、9 149191 882014919 149196 69039981 399812137539981 399816845039981 399811 2178039981 39981762670970070626709292334626709723975626709 6267091393070626709 6267091 319620626709 6267098 10930512403947 12403947520184012403947 124039472688630012403947 124039473453128012403947 124039471 598836012403947 124

16、03947(1.3)kk kj=0jyn+j = hkf(tn+k, yn+k) (1.4)j(j = 0, 1, ., k) k k = 1j (j = 0, 1, , k 1) k1.2, k kBDFBDF(1.1) 1.2k 0 1 2 3 4 5 6 7 8 k1 -1 1 1234567813325121014760735159819112575137724901089672011136251372251471764274401598112530013714736751089159811137450147490010290015981136044101089159811294082

17、32015981115981 1236111225601376014742010895880159812yn, yn+1, ., yn+k1 k EBDF(1)h 0yn, yn+1, ., yn+k1 k kyn+k yn+k+1 ,(1.4)fn+k+1 =f(tn+k+1, yn+k+1)(2) fn+k+1 (1.3) fn+k+1 yn, yn+1, ., yn+k1hk(1.3)EBDFyn+k,k +1k +1 MEBDF EBFDkB-k +1 EBDFk,(k = 1, , 8)k +1B-B-( 1,16,21-23)k +1EBDFkk k = 2, 3, , 8EBDF

18、k + 1,New BDF NBDF k k NBDFk kk k NBDFk kNBDFB-Bk BNBDFkk = 2, 3, , 8A-k NBDFNBDFA()-kEBDFB-NBDFEBDF3EBDFNBDFNBDFEBDF EBDFk k h 0 yn+j(j = 0, 1, ., k)k1jyn+j + hkf(tn+k, yn+k),j=0k2n+k+1 = jyn+j+1 k1 n+k + hkf(tn+k+1, n+k+1),j=1k1jyn+j + hkf(tn+k, yn+k) + hk+1f(tn+k+1, yn+k+1),j=0yn+k(2.1a)(2.1b)(2.

19、1c)yn+k+1 Rm(1.2) y(t) tn+j tn+k tn+k+1 y(tn+j) y(tn+k)y(tn+k+1) tn+j = tn + jh tn = a + nhk 1j, j, j, k, k, k, k+1k+1-33(2.1)( )k k1 k1 k1 j = 1,j=0 j=0 j=0k1jjp + kpkp1 = kp, p = 1, 2, ., k,j=0k1j(j + 1)p + kp(k + 1)p1 = (k + 1)p, p = 1, 2, ., k,j=0k1j=0 jjp + kpkp1 = kp k+1p(k + 1)p1, p = 1, 2, ., k,(2.2) 0 (2.1) (2.2)(2.2)1 k+1 k k (2.1)(n) = yn+k, (n) = yn+k+1, (n) = yn+k,(n)T (n)T (n)T T (2.1)-(2.2) 3 k

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报