1、初一数学(上)应知应会的知识点代数初步知识 1. 代数式:用运算符号“ ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)2.列代数式的几个注意事项:(1)数与字母相乘,或字母与字母相乘通常使用“ ” 乘,或省略不写;(2)数与数相乘,仍应使用“”乘,不用“ ”乘,也不能省略乘号;(3)数与字母相乘时,一般在结果中把数写在字母前面,如 a5 应写成 5a;(4)带分数与字母相乘时,要把带分数改成假分数形式,如 a 应写成 a;213(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联
2、系,如 3a 写成 的形式;(6)a 与 b 的差写作 a-b,要注意字母顺序;若只说两数的差,当分别设两数为 a、b 时,则应分类,写做 a-b 和 b-a .3.几个重要的代数式:(m、n 表示整数)(1)a 与 b 的平方差是: a 2-b2 ; a 与 b 差的平方是:(a-b) 2 ; (2)若 a、b、c 是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;(3)若 m、n 是整数,则被 5 除商 m 余 n 的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ;(4)若 b0,则正数是:a 2+b ,负数是: -a
3、 2-b ,非负数是: a 2 ,非正数是:-a 2 .有理数 1.有理数:(1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、)pq,p(为 整 数 且负分数统称分数;整数和分数统称有理数.注意:0 即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;不是有理数;(2)有理数的分类: 负 分 数负 整 数负 有 理 数零 正 分 数正 整 数正 有 理 数有 理 数 负 分 数正 分 数分 数 负 整 数零正 整 数整 数有 理 数(3)注意:有理数中,1、0、-1 是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己
4、的特性;(4)自然数 0 和正整数;a 0 a 是正数;a0 a 是负数;a0 a 是正数或 0 a 是非负数;a 0 a 是负数或 0 a 是非正数.2数轴:数轴是规定了原点、正方向、单位长度的一条直线.3相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0 的相反数还是 0;(2)注意: a-b+c 的相反数是-a+b-c;a-b 的相反数是 b-a;a+b 的相反数是-a-b;(3)相反数的和为 0 a+b=0 a、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0 的绝对值是 0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
5、(2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;)0a()0a(3) ; ;0a11(4) |a|是重要的非负数,即|a|0;注意:|a|b|=|ab|, .ba5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比 0 大,负数永远比 0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 0,小数-大数 0.6.互为倒数:乘积为 1 的两个数互为倒数;注意:0 没有倒数;若 a0,那么 的倒数是 ;倒aa1数是本身的数是1;若 ab=1 a、b 互为倒数;若 ab=-1 a、b 互为负倒
6、数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与 0 相加,仍得这个数.8有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9有理数减法法则:减去一个数,等于加上这个数的相反数;即 a-b=a+(-b).10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1
7、)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc) ;(3)乘法的分配律:a(b+c)=ab+ac .12有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .无 意 义即 0a13有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当 n 为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当 n 为正偶数时: (-a) n =an 或 (a-b) n=(b-a)n .14乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫
8、做幂;(3)a 2是重要的非负数,即 a20;若 a2+|b|=0 a=0,b=0;(4)据规律 底数的小数点移动一位,平方数的小数点移动二位.10215科学记数法:把一个大于 10 的数记成 a10n的形式,其中 a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设
9、成立而进行猜想的一种方法,但不能用于证明.整式的加减 1单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.3多项式:几个单项式的和叫多项式.4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若 a、b、c、p、q 是常数)ax2+bx+c 和 x2+px+q 是常见的两个二次三项式.5整式:凡不含有除法运算,或虽
10、含有除法运算但除式中不含字母的代数式叫整式.整式分类为: .多 项 式单 项 式整 式6同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7合并同类项法则:系数相加,字母与字母的指数不变.8去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.9整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.一元一
11、次方程 1等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2等式的性质: 等式性质 1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式性质 2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3方程:含未知数的等式,叫方程.4方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!5移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质 1.6一元一次方程:只含有一个未知数,并且未知数的次数是 1,并且含未知数项的系数不是零的整式方程是一元一次方程.7一元一次方程的标准形式: ax+b=0(x 是未
12、知数,a、b 是已知数,且 a0).8一元一次方程的最简形式: ax=b(x 是未知数,a、b 是已知数,且 a0).9一元一次方程解法的一般步骤: 整理方程 去分母 去括号 移项 合并同类项 系数化为 1 (检验方程的解).10列一元一次方程解应用题: (1)读题分析法: 多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-” ,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔
13、细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量) ,填入有关的代数式是获得方程的基础.11列方程解应用题的常用公式:(1)行程问题: 距离=速度时间 ;时 间距 离速 度 速 度距 离时 间 (2)工程问题: 工作量=工效工时 ;工 时工 作 量工 效 工 效工 作 量工 时(3)比率问题: 部分=全体比率 ;全 体部 分比 率 比 率部 分全 体 (4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价 折 ,利润=售价
14、-成本, 10;%10成 本 成 本售 价利 润 率(6)周长、面积、体积问题:C 圆 =2R,S 圆 =R 2,C 长方形 =2(a+b),S 长方形 =ab, C 正方形 =4a,S 正方形 =a2,S 环形 =(R 2-r2),V 长方体 =abc ,V 正方体 =a3,V 圆柱=R 2h ,V 圆锥 = R 2h.31第一册第一章 有理数1.1 正数和负数以前学过的 0 以外的数前面加上负号“”的书叫做负数。以前学过的以外的数叫做正数。数既不是正数也不是负数,是正数与负数的分界。在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2 有理数1.2.1 有理数正整数、0、负整数统称
15、整数,正分数和负分数统称分数。整数和分数统称有理数。1.2.2 数轴规定了原点、正方向、单位长度的直线叫做数轴。数轴的作用:所有的有理数都可以用数轴上的点来表达。注意事项:数轴的原点、正方向、单位长度三要素,缺一不可。同一根数轴,单位长度不能改变。一般地,设是一个正数,则数轴上表示 a 的点在原点的右边,与原点的距离是 a 个单位长度;表示数a 的点在原点的左边,与原点的距离是 a 个单位长度。1.2.3 相反数只有符号不同的两个数叫做互为相反数。数轴上表示相反数的两个点关于原点对称。在任意一个数前面添上“”号,新的数就表示原数的相反数。1.2.4 绝对值一般地,数轴上表示数 a 的点与原点的
16、距离叫做数 a 的绝对值。一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0 的绝对值是 0。在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。比较有理数的大小:正数大于 0,0 大于负数,正数大于负数。两个负数,绝对值大的反而小。1.3 有理数的加减法1.3.1 有理数的加法有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加。绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得 0。一个数同 0 相加,仍得这个数。两个数相加,交换加数的位置,和不变。加法交换律:abba三个数相
17、加,先把前面两个数相加,或者先把后两个数相加,和不变。加法结合律:(ab)ca(bc)1.3.2 有理数的减法有理数的减法可以转化为加法来进行。有理数减法法则:减去一个数,等于加这个数的相反数。aba(b) 1.4 有理数的乘除法1.4.1 有理数的乘法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同 0 相乘,都得 0。乘积是 1 的两个数互为倒数。几个不是 0 的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。两个数相乘,交换因数的位置,积相等。abba三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。(ab)ca(bc)一个数同两个
18、数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。a(bc)abac数字与字母相乘的书写规范:数字与字母相乘,乘号要省略,或用“”数字与字母相乘,当系数是 1 或1 时,1 要省略不写。带分数与字母相乘,带分数应当化成假分数。用字母 x 表示任意一个有理数,2 与 x 的乘积记为 2x,3 与 x 的乘积记为 3x,则式子 2x3x是 2x 与 3x 的和,2x 与 3x 叫做这个式子的项,2 和 3 分别是着两项的系数。一般地,合并含有相同字母因数的式子时,只需将它们的系数合并,所得结果作为系数,再乘字母因数,即axbx(ab)x上式中 x 是字母因数,a 与 b 分别是 ax 与 b
19、x 这两项的系数。去括号法则:括号前是“” ,把括号和括号前的“”去掉,括号里各项都不改变符号。括号前是“” ,把括号和括号前的“”去掉,括号里各项都改变符号。括号外的因数是正数,去括号后式子各项的符号与原括号内式子相应各项的符号相同;括号外的因数是负数,去括号后式子各项的符号与原括号内式子相应各项的符号相反。1.4.2 有理数的除法有理数除法法则:除以一个不等于 0 的数,等于乘这个数的倒数。aba (b0)b1两数相除,同号得正,异号得负,并把绝对值相除。0 除以任何一个不等于 0 的数,都得0。因为有理数的除法可以化为乘法,所以可以利用乘法的运算性质简化运算。乘除混合运算往往先将除法化成
20、乘法,然后确定积的符号,最后求出结果。1.5 有理数的乘方1.5.1 乘方求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在 an中,a 叫做底数,n 叫做指数,当 an看作 a 的 n 次方的结果时,也可以读作 a 的 n 次幂。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0 的任何正整数次幂都是 0。有理数混合运算的运算顺序:先乘方,再乘除,最后加减;同极运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行1.5.2 科学记数法把一个大于 10 的数表示成 a10n的形式(其中 a 是整数数位只有一位的数,n 是正整数) ,使用的是
21、科学记数法。用科学记数法表示一个 n 位整数,其中 10 的指数是 n1。1.5.3 近似数和有效数字接近实际数目,但与实际数目还有差别的数叫做近似数。精确度:一个近似数四舍五入到哪一位,就说精确到哪一位。从一个数的左边第一个非 0 数字起,到末位数字止,所有数字都是这个数的有效数字。对于用科学记数法表示的数 a10n,规定它的有效数字就是 a 中的有效数字。第二章 一元一次方程2.1 从算式到方程2.1.1 一元一次方程含有未知数的等式叫做方程。只含有一个未知数(元) ,未知数的指数都是 1(次) ,这样的方程叫做一元一次方程。分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决
22、实际问题的一种方法。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。2.1.2 等式的性质等式的性质 1 等式两边加(或减)同一个数(或式子) ,结果仍相等。等式的性质 2 等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。2.2 从古老的代数书说起一元一次方程的讨论把等式一边的某项变号后移到另一边,叫做移项。2.3 从“买布问题”说起一元一次方程的讨论方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。解方程就是要求出其中的未知数(例如 x) ,通过去分母、去括号、移项、合并、系数化为 1等步骤,就可以使一元一次方程逐步向着 xa 的形式转化,这个过
23、程主要依据等式的性质和运算律等。去分母:具体做法:方程两边都乘各分母的最小公倍数依据:等式性质 2注意事项:分子打上括号不含分母的项也要乘2.4 再探实际问题与一元一次方程第三章 图形认识初步3.1 多姿多彩的图形现实生活中的物体我们只管它的形状、大小、位置而得到的图形,叫做几何图形。3.1.1 立体图形与平面图形长方体、正方体、球、圆柱、圆锥等都是立体图形。此外棱柱、棱锥也是常见的立体图形。长方形、正方形、三角形、圆等都是平面图形。许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。3.1.2 点、线、面、体几何体也简称体。长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等
24、都是几何体。包围着体的是面。面有平的面和曲的面两种。面和面相交的地方形成线。线和线相交的地方是点。几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。3.2 直线、射线、线段经过两点有一条直线,并且只有一条直线。两点确定一条直线。点 C 线段 AB 分成相等的两条线段 AM 与 MB,点 M 叫做线段 AB 的中点。类似的还有线段的三等分点、四等分点等。直线桑一点和它一旁的部分叫做射线。两点的所有连线中,线段最短。简单说成:两点之间,线段最短。3.3 角的度量角也是一种基本的几何图形。度、分、秒是常用的角的度量单位。把一个周角 360 等分,每一份就是一度的角,记作 1;把 1 度的角
25、 60 等分,每份叫做 1 分的角,记作 1;把 1 分的角 60 等分,每份叫做 1 秒的角,记作 1。3.4 角的比较与运算3.4.1 角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。类似的,还有叫的三等分线。3.4.2 余角和补角如果两个角的和等于 90(直角) ,就说这两个角互为余角。如果两个角的和等于 180(平角) ,就说这两个角互为补角。等角的补角相等。等角的余角相等。本章知识结构图几何图形立体图形平面图 形从不同方向看立体图形展开立体图 形平面图 形平面图 形直线、射线、 线段角角的度量角的大小比较余角和补角角的平分线等角的补角相等等角的余角相等
26、第二册第五章 相交线与平行线5.1 相交线5.1.1 相交线有一个公共的顶点,有一条公共的边,另外一边互为反向延长线,这样的两个角叫做邻补角。两条直线相交有 4 对邻补角。有公共的顶点,角的两边互为反向延长线,这样的两个角叫做对顶角。两条直线相交,有 2 对对顶角。对顶角相等。5.1.2两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。注意:垂线是一条直线。具有垂直关系的两条直线所成的 4 个角都是 90。垂直是相交的特殊情况。垂直的记法:ab,ABCD。画已知直线的垂线有无数条。过一点有且只有一条直线与已知直线垂直。连接
27、直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。5.2 平行线5.2.1 平行线在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:ab。在同一平面内两条直线的关系只有两种:相交或平行。平行公理:经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。5.2.2 直线平行的条件两条直线被第三条直线所截,在两条被截线的同一方,截线的同一旁,这样的两个角叫做同位角。两条直线被第三条直线所截,在两条被截线之间,截线的两侧,这样的两个角叫做内错角。两条直线被第三条直线
28、所截,在两条被截线之间,截线的同一旁,这样的两个角叫做同旁内角。判定两条直线平行的方法:方法 1 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。方法 2 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。方法 3 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。5.3 平行线的性质平行线具有性质:性质 1 两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。性质 2 两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行
29、,内错角相等。性质 3 两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做着两条平行线的距离。判断一件事情的语句叫做命题。5.4 平移把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同。新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点,连接各组对应点的线段平行且相等。图形的这种移动,叫做平移变换,简称平移。第六章 平面直角坐标系6.1 平面直角坐标系6.1.1 有序数对有顺序的两个数 a 与 b 组成的数对,叫做有序数对。6.1.2 平面直角坐标系平
30、面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为 x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为 y 轴或纵轴取 2 向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。平面上的任意一点都可以用一个有序数对来表示。建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了、四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。6.2 坐标方法的简单应用6.2.1 用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:建立坐标系,选择一个适当的参照点为原点,确定 x 轴、y 轴的正方向;根据具体问题确定适当的比例
31、尺,在坐标轴上标出单位长度;在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。6.2.2 用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移 a 个单位长度,可以得到对应点(xa,y) (或(xa,y) ) ;将点(x,y)向上(或下)平移 b 个单位长度,可以得到对应点(x,yb) (或(x,yb) ) 。在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移 a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下)平移 a 个单位长度。第七章 三角形7.1 与
32、三角形有关的线段7.1.1 三角形的边由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。相邻两边组成的角,叫做三角形的内角,简称三角形的角。顶点是 A、B、C 的三角形,记作“ABC” ,读作“三角形 ABC”。三角形两边的和大于第三边。7.1.2 三角形的高、中线和角平分线7.1.3 三角形的稳定性三角形具有稳定性。7.2 与三角形有关的角7.2.1 三角形的内角三角形的内角和等于 180。7.2.2 三角形的外角三角形的一边与另一边的延长线组成的角,叫做三角形的外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任何一个内角。7.3 多边形及其
33、内角和7.3.1 多边形在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。n 边形的对角线公式: 2)3(n各个角都相等,各条边都相等的多边形叫做正多边形。7.3.2 多边形的内角和n 边形的内角和公式:180(n2) 多边形的外角和等于 360。7.4 课题学习 镶嵌第八章 二元一次方程组8.1 二元一次方程组含有两个未知数,并且未知数的指数都是 1 的方程叫做二元一次方程把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解二元一次方程组的两个方程的公
34、共解,叫做二元一次方程组的解。8.2 消元由二元一次方程组中的一个方程,将一个未知数用含有另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法。两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。这种方法叫做加减消元法,简称加减法。8.3 再探实际问题与二元一次方程组第九章 不等式与不等式组9.1 不等式9.1.1 不等式及其解集用“”或“”号表示大小关系的式子叫做不等式。使不等式成立的未知数的值叫做不等式的解。能使不等式成立的未知数的取值范围,叫做不等式解的
35、集合,简称解集。含有一个未知数,未知数的次数是 1 的不等式,叫做一元一次不等式。9.1.2 不等式的性质不等式有以下性质:不等式的性质 1 不等式两边加(或减)同一个数(或式子) ,不等号的方向不变。不等式的性质 2 不等式两边乘(或除以)同一个正数,不等号的方向不变。 不等式的性质 3 不等式两边乘(或除以)同一个负数,不等号的方向改变。9.2 实际问题与一元一次不等式解一元一次方程,要根据等式的性质,将方程逐步化为 xa 的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为 xa(或 xa)的形式。9.3 一元一次不等式组把两个不等式合起来,就组成了一个一元一次不等式组。几
36、个不等式的解集的公共部分,叫做由它们所组成的不等式的解集。解不等式就是求它的解集。对于具有多种不等关系的问题,可通过不等式组解决。解一元一次不等式组时。一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集。9.4 课题学习 利用不等关系分析比赛第十章 实数10.1 平方根如果一个正数 x 的平方等于 a,即 x2a,那么这个正数 x 叫做 a 的算术平方根。a 的算术平方根记为 ,读作“根号 a”,a 叫做被开方数。如果一个数的平方等于 a,那么这个数叫做 a 的平方根或二次方根。求一个数 a 的平方根的运算,叫做开平方。10.2 立方根如果一个数的立方等于 a,那么这个数叫做 a 的立方根或三次方根。求一个数的立方根的运算,叫做开立方。10.3 实数无限不循环小数又叫做无理数。有理数和无理数统称实数。一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0 的绝对值是 0。