1、专题一 实数考点:1.正数与负数2.绝对值,相反数 ,倒数3.科学计数法4.平方根,立方根5.无理数6.实数与数轴7.实数大小比较8.实数的运算9.实数的规律探究专题二 整式考点 1.代数式2.整式地加减3.幂的运算4.整式乘除5.因式分解专题三 分式考点 1.分式的意义2.分式的基本性质3.约分和通分4.分式的运算5.化简求值6.解分式方程7.分式方程的应用专题四。方程与方程(组)考点 1 一元一次方程,二元一次方程组的解2.解一元一次方程,二元一次方程组3 有关应用题4 一元二次方程根的判别式5 一元二次方程根与系数的关系6 一元二次方程的代数应用,几何应用专题五 不等式与不等式组考点 1
2、 不等式及不等式的性质2 不等式的解集3 解不等式(组)4 有关应用题专题六函数及其图像考点 1 平面直角坐标系2 坐标系中的几何图形3 函数的图像4 函数自变量的取值范围5 一次函数的图像及性质6 一次函书与方程组,不等式7 一次函数应用题8 反比例函数图像与性质9 反比例函数 K 的几何意义10 一次函书与反比例函数的交点11 反比例函数应用题12 二次函数的图像,性质13 抛物线的平移规律14 抛物线的顶点坐标,对称轴,最值15 抛物线位置与系数的关系模块二 图形与几何专题一图形基本概念及相交线,平行线考点 1 图形基本概念2 平行线的判定与性质专题二 三角形考点 1 三角形及内角,外角
3、2 三角形三边关系3 三角形的中位线4 等腰三角形5 三角形全等的判定6 全等与平移,轴对称,旋转专题三 平行四边形考点 1 平行四边形的性质与判定2 与平行四边形有关的边,角的计算3 平行四边形的性质及运用4 与平行四边形有关的面积问题5 矩形,菱形,正方形的性质与判定6 折叠问题7 动点问题专题四 圆考点 1 圆中的基本概念2 圆心角与圆周角3 垂径定理4 狐,圆周角,圆心角之间的关系5 圆与相似的综合题6 直线与圆的位置关系7 切线的性质,判定8 切线长定理及运用9 狐长的计算10 扇形面积,阴影面积的计算11 圆锥的侧面展开图及相关计算专题五 投影与视图考点 1 判断一个物体的三视图2
4、 由三视图推断物体形状3 立体图形的展开与折叠专题六 图形的相似考点 1 比例的性质2 相似三角形的性质3 相似三角形的判定4 位似的性质,位似变换专题七 解直角三角形考点 1 三角函数2 特殊角的三角函数值3 解直角三角形4 方位角,仰角俯角,坡度的有关应题专题八 统计考点 1 抽样调查与全面调查2 条形图,扇形图与折线图及各自的利弊3 直方图的解读与运用4 用样本估计总体5 平均数,中位数与众数6 极差,方差专题九 概率考点 1 随机事件2 用列表法,树形图法求概率3 用频率估计概率75、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角相等的梯 形是等腰梯形 77、对角
5、线相等的梯形是等腰梯形 78、平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 79、推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰 80、推论 2 经过三角形一边的中点与另一边平行的直线,必平分第三边 81、三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh 83、 (1)比例的基本性质:如果 a:b=c:d,那么 ad=bc 如果 ad=bc ,那么 a:b=c:d 84、 (2)合比性质:如果 ab=cd, 那么(ab) b=(
6、cd)d 85、 (3)等比性质:如果 ab=cd=mn(b+d+n0),那么(a+c+m) (b+d+n)=ab 86、平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例 87、推论 平行于三角形一边的直线截其他两边(或两边的延长线) ,所得的对应线段成比例88、定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边 89、平行于三角形的一边,并且和其他两边相交的直线, 所截得的三角形的三边与原三角形三边对应成比例 90、定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似 91、相似三角
7、形判定定理 1 两角对应相等,两三角形相似(ASA) 92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 93、判定定理 2 两边对应成比例且夹角相等,两三角形相似(SAS) 94、判定定理 3 三边对应成比例,两三角形相似(SSS) 95、定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似 96、性质定理 1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比 97、性质定理 2 相似三角形周长的比等于相似比 98、性质定理 3 相似三角形面积的比等于相似比的平方 99、任意锐角的正弦值等于它的余角的余
8、弦值,任意锐角的余弦值等于它的余角的正弦值 100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值 101、圆是定点的距离等于定长的点的集合 102、圆的内部可以看作是圆心的距离小于半径的点的集合 103、圆的外部可以看作是圆心的距离大于半径的点的集合 104、同圆或等圆的半径相等 105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107、到已知角的两边距离相等的点的轨迹,是这个角的平分线 108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线 1
9、09、定理 不在同一直线上的三点确定一个圆。110、垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧 111、推论 1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 弦的垂直平分线经过圆心,并且平分弦所对的两条弧 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112、推论 2 圆的两条平行弦所夹的弧相等 113、圆是以圆心为对称中心的中心对称图形 114、定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等 115、推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
10、116、定理 一条弧所对的圆周角等于它所对的圆心角的一半 117、推论 1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等 118、推论 2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 119、推论 3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形 120、定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121、直线 L 和O 相交 dr 直线 L 和O 相切 d=r 直线 L 和O 相离 dr 122、切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线123、切线的性质定理 圆的切线垂直于经过切点的半径
11、 124、推论 1 经过圆心且垂直于切线的直线必经过切点 125、推论 2 经过切点且垂直于切线的直线必经过圆心 126、切线长定理 从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角 127、圆的外切四边形的两组对边的和相等 128、弦切角定理 弦切角等于它所夹的弧对的圆周角 129、推论 如果两个弦切角所夹的弧相等,那么这两个弦切角也相等 130、相交弦定理 圆内的两条相交弦,被交点分成的两条线段长的积相等 131、推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项 132、切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交
12、点的两条线段长的比例中项 133、推论 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等 134、如果两个圆相切,那么切点一定在连心线上 135、两圆外离 dR+r 两圆外切 d=R+r 两圆相交 R-rdR+r(Rr) 两圆内切 d=R-r(Rr) 两圆内含 dR-r(Rr) 136、定理 相交两圆的连心线垂直平分两圆的公共弦 137、定理 把圆分成 n(n3): 依次连结各分点所得的多边形是这个圆的内接正 n 边形 经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正 n 边形 138、定理 任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆
13、 139、正 n 边形的每个内角都等于(n-2 )180 n 140、定理 正 n 边形的半径和边心距把正 n 边形分成 2n 个全等的直角三角形 141、正 n 边形的面积 Sn=pnrn2 p 表示正 n 边形的周长 142、正三角形面积3a4 a 表示边长 143、如果在一个顶点周围有 k 个正 n 边形的角,由于这些角的和应为 360,因此 k(n-2)180n=360化为(n-2 )(k-2)=4 144、弧长计算公式:L=n 兀 R180 145、扇形面积公式:S 扇形=n 兀 R2360=LR2 146、内公切线长= d-(R-r) 外公切线长= d-(R+r)三、常用数学公式公
14、式分类 公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)一元二次方程的解 -b+(b2-4ac)/2a -b-(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 某些数列前 n 项和1+2+3+4+5+6+7+8+9+n=n(n+1)/2 1+3+5+7+9+11+13+15+(2n-1)=n2 2+4+6+8+10+12+14+(2n)=n(n+1) 12+22+32+42+52+62+72+82+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6*7+n(n+1)=n(n+1)(n+2)/3 正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径余弦定理 b2=a2+c2-2accosB 注:角 B 是边 a 和边 c 的夹角