1、第一章 统计案例,1.1回归分析的基本思想及其初步应用,什么是回归分析:,“回归”一词是由英国生物学家F.Galton在研究人体身高的遗传问题时首先提出的。,根据遗传学的观点,子辈的身高受父辈影响,以X记父辈身高,Y记子辈身高。 虽然子辈身高一般受父辈影响,但同样身高的父亲,其子身高并不一致,因此, X和Y之间存在一种相关关系。,一般而言,父辈身高者,其子辈身高也高,依此推论,祖祖辈辈遗传下来,身 高必然向两极分化,而事实上并非如此,显然有一种力量将身高拉向中心,即子辈 的身高有向中心回归的特点。“回归”一词即源于此。,虽然这种向中心回归的现象只是特定领域里的结论,并不具有普遍性,但从它 所描
2、述的关于X为自变量,Y为不确定的因变量这种变量间的关系看,和我们现在的 回归含义是相同的。,不过,现代回归分析虽然沿用了“回归”一词,但内容已有很大变化,它是一种应用 于许多领域的广泛的分析研究方法,在经济理论研究和实证研究中也发挥着重要作用。,问题1:正方形的面积y与正方形的边长x之间的函数关系是,问题2:某水田水稻产量y与施肥量x之间是否 -有一个确定性的关系?,例如:在 7 块并排、形状大小相同的试验田上 进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:,复习:变量之间的两种关系,自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。,1、定义:,1):相
3、关关系是一种不确定性关系;,注,2、现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等,探索:水稻产量y与施肥量x之间大致有何规律?,10 20 30 40 50,500 450 400 350 300,发现:图中各点,大致分布在某条直线附近。,探索2:在这些点附近可画直线不止一条, 哪条直线最能代表x与y之间的关系呢?,施化肥量,水稻产量,散点图,例1 从某大学中随机选取8名女大学生,其身高和体重数据如表1-1所示。,求根据一名女大学生的身高预报她的体重的回归方程,并预报一名身高为 172cm的女大学生的体重。,案例1:女大
4、学生的身高与体重,解:1、选取身高为自变量x,体重为因变量y,作散点图:,2、由散点图知道身高和体重有比较好的 线性相关关系,因此可以用线性回归方程 刻画它们之间的关系。,3、从散点图还看到,样本点散布在某一条 直线的附近,而不是在一条直线上,所以 可以近似用一次函数y=bx+a描述它们关系。,我们可以用最小二乘法求出b, a的值,根据最小二乘法估计 和 就是未知参数a和b的最好估计,,所以回归方程是,所以,对于身高为172cm的女大学生,由回归方程可以预报 其体重为,探究P4: 身高为172cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?,探究P4: 身高为172
5、cm的女大学生的体重一定是60.316kg吗?如果不是,你能解析一下原因吗?,答:身高为172cm的女大学生的体重不一定是60.316kg,但一般可以认为她的体重在60.316kg左右。,60.136kg不是每个身高为172cm的女大学生的体重的预测值,而是所有身高为172cm的女大学生平均体重的预测值。,从散点图还看到,样本点散布在某一条直线的附近,而不是精确的分布在一条直线上,所以不能用一次函数y=bx+a描述它们关系。,我们可以用下面的线性回归模型来表示: y=bx+a+e,其中a和b为模型的未知参数, e称为随机误差。,思考P3 产生随机误差项e 的原因是什么?,思考 产生随机误差项e
6、的原因是什么?,随机误差e的来源(可以推广到一般): 1、其它因素的影响:影响体重y 的因素不只是身高 x,可能还包括遗传基因、饮食习惯、生长环境等因素; 2、用线性回归模型近似真实模型所引起的误差; 3、身高 x 的观测误差。,函数模型与回归模型之间的差别,函数模型:,回归模型:,可以提供 选择模型的准则,函数模型与回归模型之间的差别,函数模型:,回归模型:,线性回归模型y=bx+a+e增加了随机误差项e,因变量y的值由自变量x和随机误差项e共同确定,即自变量x只能解析部分y的变化。,在统计中,我们也把自变量x称为解析变量,因变量y称为预报变量。,1.用相关系数 r 来衡量,2.公式:,求出
7、线性相关方程后, 说明身高x每增加一个单位,体重y就增加0.849个单位,这表明体重与身高具有正的线性相关关系.如何描述它们之间线性相关关系的强弱呢?,、当 时,x与y为完全线性相关,它们之间存在确定的函数关系。 、当 时,表示x与y存在着一定的线性相关,r的绝对值越大,越接近于1,表示x与y直线相关程度越高,反之越低。,3.性质:,相关关系的测度 (相关系数取值及其意义),r,对回归模型进行统计检验,思考P6: 如何刻画预报变量(体重)的变化?这个变化在多大程度上 与解析变量(身高)有关?在多大程度上与随机误差有关?,假设身高和随机误差的不同不会对体重产生任何影响,那么所有人的体重将相同。在
8、体重不受任何变量影响的假设下,设8名女大学生的体重都是她们的平均值, 即8个人的体重都为54.5kg。,在散点图中,所有的点应该落在同一条水平直线上,但是观测到的数据并非如此。这就意味着预报变量(体重)的值 受解析变量(身高)和随机误差的影响。,例如,编号为6的女大学生的体重并没有落在水平直线上,她的体重为61kg。解析变量(身高)和随机误差共同把这名学生的体重从54.5kg“推”到了61kg,相差6.5kg,所以6.5kg是解析变量和随机误差的组合效应。,编号为3的女大学生的体重并也没有落在水平直线上,她的体重为50kg。解析变量(身高)和随机误差共同把这名学生的体重从50kg“推”到了54
9、.5kg,相差-4.5kg,这时解析变量和随机误差的组合效应为-4.5kg。,用这种方法可以对所有预报变量计算组合效应。,在例1中,总偏差平方和为354。,那么,在这个总的效应(总偏差平方和)中,有多少来自于解析变量(身高)?有多少来自于随机误差?,假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近,所以一定是随机误差把这些点从回归直线上“推”开了。,在例1中,残差平方和约为128.361。,例如,编号为6的女大学生,计算随机误差的效应(残差)为:,解析变量和随机误差的总效应
10、(总偏差平方和) =解析变量的效应(回归平方和)+随机误差的效应(残差平方和),显然,R2的值越大,说明残差平方和越小,也就是说模型拟合效果越好。,在线性回归模型中,R2表示解析变量对预报变量变化的贡献率。,R2越接近1,表示回归的效果越好(因为R2越接近1,表示解析变量和预报变量的线性相关性越强)。,如果某组数据可能采取几种不同回归方程进行回归分析,则可以通过比较R2的值来做出选择,即选取R2较大的模型作为这组数据的模型。,总的来说: 相关指数R2是度量模型拟合效果的一种指标。 在线性模型中,它代表自变量刻画预报变量的能力。,表1-3,从表3-1中可以看出,解析变量对总效应约贡献了64%,即
11、R20.64,可以叙述为“身高解析了64%的体重变化”,而随机误差贡献了剩余的36%。所以,身高对体重的效应比随机误差的效应大得多。,在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是否线性相关,是否可以用回归模型来拟合数据。,残差分析与残差图的定义:,然后,我们可以通过残差 来判断模型拟合的效果,判断原始数据中是否存在可疑数据,这方面的分析工作称为残差分析。,我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。,表1-4列出了女大学生身高和体重的原始数据以及相应的残差数据。,使用公式 计算残差,残差图的制作
12、及作用。 坐标纵轴为残差变量,横轴可以有不同的选择; 若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域; 对于远离横轴的点,要特别注意。,身高与体重残差图,几点说明:第一个样本点和第6个样本点的残差比较大,需要确认在采集过程中是否有人为的错误。如果数据采集有错误,就予以纠正,然后再重新利用线性回归模型拟合数据;如果数据采集没有错误,则需要寻找其他的原因。另外,残差点比较均匀地落在水平的带状区域中,说明选用的模型比较合适,这样的带状区域的宽度越窄,说明模型拟合精度越高,回归方程的预报精度越高。,一般地,建立回归模型的基本步骤为:,(1)确定研究对象,明确哪个变量是解析变量,哪个变量是
13、预报变量。,(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。,(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).,(4)按一定规则估计回归方程中的参数(如最小二乘法)。,(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。,作业:某种产品的广告费支出x与销售额y之间有如表所示数据:,(1)求线性回归方程; (2)求总偏差平方和及残差平方和; (3)求R2,说明模型的拟合效果,残差变量对销售额的影响百分比.,y=6.5x+17.5,1000, 155,0.845,