,第九节,欧拉方程,欧拉方程,常系数线性微分方程,第七章,欧拉方程的算子解法:,计算繁!,则由上述计算可知:,用归纳法可证,于是欧拉方程,转化为常系数线性方程:,例1.,解:,则原方程化为,亦即,其根,则对应的齐次方程的通解为,特征方程, 的通解为,换回原变量, 得原方程通解为,设特解:,代入确定系数, 得,例2.,解:,将方程化为,(欧拉方程),则方程化为,即,特征根:,设特解:,代入 解得 A = 1,所求通解为,例3.,解: 由题设得定解问题,则化为,特征根:,设特解:,代入得 A1,得通解为,利用初始条件得,故所求特解为,思考: 如何解下述微分方程,提示:,原方程,直接令,为常数,作业 P349 2 ; 6; 8,第十节,