收藏 分享(赏)

高分子物理课后习题.pdf

上传人:精品资料 文档编号:10417693 上传时间:2019-11-08 格式:PDF 页数:10 大小:460.24KB
下载 相关 举报
高分子物理课后习题.pdf_第1页
第1页 / 共10页
高分子物理课后习题.pdf_第2页
第2页 / 共10页
高分子物理课后习题.pdf_第3页
第3页 / 共10页
高分子物理课后习题.pdf_第4页
第4页 / 共10页
高分子物理课后习题.pdf_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、第 1 章 高分子的链结构 4.哪些参数可以表征高分子链的柔顺性?如何表征? 答:( 1)空间位阻参数(或称刚性因子) ,实测的无扰均方末端距与自由旋转链的均方末端距之比 , 值愈大 ,内旋转阻碍越大 ,柔顺性愈差; ( 2)特征比 Cn,无扰链与自由连接链均方末端距的比值 , Cn 值越小,链的柔顺性越好; ( 3)连段长度 b, b值愈小,链愈柔顺。 7.比较下列四组高分子链的柔顺性并简要加以解释。 解: ( 1) 聚乙烯聚氯乙烯聚丙烯腈,取代基极性越大,高聚物柔顺性越差; ( 2)聚甲醛聚苯醚聚苯,主链刚性基团比例越大,柔顺性越差,苯环柔顺性比亚甲基差; ( 3)聚丁二烯聚氯丁二烯聚氯乙

2、烯;孤立双键的柔顺性较单键主链好,极性取代基是的聚合物柔顺性变差; ( 4)聚偏二氟乙烯聚氟乙烯聚二氟乙烯,对称取代的柔顺性优于单取代,取代基比例越大,柔顺性越差; 第 2 章 聚合物的凝聚态结构 3.聚合物在不同条件下结晶时,可能得到哪几种主要的结晶形态?各种结晶形态的特征是什么? 答:( 1)可能得到的结晶形态:单晶、树枝晶、球晶、纤维状晶、串晶、柱晶、伸直链晶体; ( 2)形态特征:单晶:分子链垂直于片晶平面排列,晶片厚度一般只有 10nm左右;树枝晶:许多单晶片在特定方向上的择优生长与堆积形成树枝状;球晶:呈圆球状,在正交偏光显微镜下呈现特有的黑十字消光,有些出现同心环;纤维状晶:晶体

3、呈纤维状,长度大大超过高分子链的长度;串晶:在电子显微镜下,串晶形如串珠;柱晶:中心贯穿有伸直链晶体的扁球晶,呈柱状 ;伸直链晶体:高分子链伸展排列晶片厚度与分子链长度相当。 4.测定聚合物的结晶度的方法有哪几种?简述其基本原理。不同方法测得的结晶度是否相同?为什么? 答:( 1)密度法, X射线衍射法,量热法; ( 2)密度法的依据:分子链在晶区规整堆砌,故晶区密度大于非晶区密度; X 射线衍射法的依据:总的相干散射强度等于晶区和非晶区相干散射强度之和;量热法的依据:根据聚合物熔融过程中的热效应来测定结晶度的方法。 ( 3)不同,因为结晶度的概念缺乏明确的物理意义,晶区和非晶区的界限很不明确

4、,无法准确测定结晶部分的量,所以其数值随测定方法不同而不同。 11.某一聚合物完全结晶时的密度为 0.936g/cm3,完全非晶态的密度为0.854g/cm3,现知该聚合物的实际密度为 0.900g/cm3,试问其体积结晶度应为多少? 答 :根据体积结晶度计算公式 带入 =0.900g/cm3 , a=0.854g/cm3, c=0.936g/cm3 得 =0.561 第 5 章 聚合物的转变与松弛 5.试用玻璃化转变的自由体积理论解释:( 1)非晶态聚合物冷却时体积收缩速率发生变化;( 2)冷却速度愈快,测得的 Tg 值愈高。 答:( 1)在 Tg 以上,非晶态聚合物体积收缩时,包括聚合物分

5、子占有体积的收缩以及自由体积的收缩,而在 Tg 以下,自由体积处于冻结状态,所以,聚合物体积收缩只有聚合物占有体积的收缩,因此,体积收缩速率会有变化。 ( 2)当冷却速度愈快,测得的 Tg 偏大,这是因为:一方面,温度降低,体系的自由体积减小,同时,粘度增大,链段运动的松弛时间增加,另一方面,冷却速率决定了实验的观察时间,而玻璃化温度是链段 运动的松弛时间与实验的观察时间相当时的温度,故冷却愈快,观察时间愈短,测得的 Tg 值愈高。 9.比较下列各组聚合物的 Tg 高低并说明理由: ( 1)聚二甲基硅氧烷,顺式聚 1, 4-丁二烯 聚二甲基硅氧烷 顺式聚 1, 4-丁二烯 , Si O 键的柔

6、顺性较碳碳键好,柔顺性好,链段较易移动,玻璃化温度低; ( 2)聚己二酸乙二醇酯,聚对苯二甲酸乙二醇酯; 聚己二酸乙二醇酯 聚对苯二甲酸乙二醇酯 ,苯环的存在使得分子的运动能力变差,玻璃化转变温度提高; ( 3)聚丙烯,聚 4-甲基 -1-戊烯; 聚丙烯 聚 4-甲基 -1-戊烯 分子链越短,链段运动能力越大,玻璃化转变温度越低; ( 4)聚氯乙烯,聚偏二氯乙烯; 聚氯乙烯 聚偏二氯乙烯 ,对称取代柔顺性好,链段运动能力强,玻璃环转变温度低; 12.现有某种聚丙烯试样,将其熔体 10ml 于 150在膨胀计中进行等温结晶,不同时间测得聚合物的体积如下: t/min 3.2 4.7 7.1 12

7、.6 20 V/ml 9.9981 9.9924 9.9765 9.8418 9.5752 已知聚丙烯晶胞密度为 0.96g/cm3,完全非晶时的密度为 0.84g/cm3, 结晶完全时体积结晶度为 50%。试用 Avrami 方程计算该试样的结晶速度常数 K和 Avrami 指数 n。 答:由题, = =50%, 将已知条件带入求的结晶终点时聚丙烯的密度 0.90 g/cm3, 根据质量守恒, a 10= , 求的结晶终了时的体积为: 9.3333ml. 根据 Avrami 方程: , 将 Avrami 方程去两次对数可得: 根据质量守恒, 联系方程 各项,以体 积值替代比 体积进行 计算,

8、 以 对 lgt 作图 t 3.2 4.7 7.1 12.6 20 Vt 9.9981 9.9924 9.9765 9.8418 9.5752 lgt 3.2 4.7 7.1 12.6 20 9.9981 9.9924 9.9765 9.8418 9.5752 0.5051 0.6721 0.8513 1.1004 1.3010 -2.5446 -1.9406 -1.4451 -0.5672 0.0060 由 图及数据拟合曲线可知: n=3.206, K=7.26 10-5 y = 3.206x - 4.1388 -3.0000 -2.5000 -2.0000 -1.5000 -1.0000

9、-0.5000 0.0000 0.5000 0.0000 0.5000 1.0000 1.5000 系列 1 线性 (系列 1) 第 6 章 橡胶弹性 5.一交联橡胶试片,长 2.8cm、宽 1.0cm、厚 0.2cm、重 0.518g,于 25 时拉长1倍,测定张力为 9.8N。请计算该试样网链的平均分子量。 答: 根据交联橡胶状态方程: , 得到 由题 =2, = ,代入数据的, =49 104N/m2, =0.518/2.8/1.0/0.2=0.925 106g/m3 代入数据得: 8185g/mol 6. 某硫化橡胶试样,其网链平均分子量为 10000,密度为 1g/cm3。问 25

10、时拉伸 1 倍需要多大的应力 ?(R=8.314J/Kmol) 答: 根据交联橡胶状态方程: , =2, 代入数据得 =0.433J/cm3=0.433N m 106/m3=4.33 105Pa 7.一硫化橡胶试样,应力为 1.510 6N/m2时拉伸比为 2.5.试计算该试样 1cm3中的网链数 。 答: 根据交联橡胶状态方程: , 代入数据得 N1=1.538 102 0 储能模量E tg 第 7 章 聚合物的粘弹性 2.简述温度和外力作用频率对聚合物内耗大小的影响。画出聚合物的动态力学普示意图,举出两例说明谱图在研究聚合物结构与性能方面的应用。 答: 1)温度对聚合物内耗大小的影响:当温

11、度较低( TTf) 时 ,分子主链开始运动,运功过程中所需克服的摩擦阻力增大,整链运动受阻,力学损耗会进一步的增大; 2) 频率对聚合物内耗的影响:根据时温等效原理,聚合物在高频下的反应同低温时的的 反应一致;在低频时与高温的反应一致,当某一频率所对应的周期低温 T Tg Tf 高温 比链段小的单元运动 玻璃态 玻璃化转变区 链段运动自由 冻结 高弹态 链段运动 流动态 分子主链运动 与链段的松弛时间处在同一数量级时,则会观察到明显的力学损耗,与玻璃化转变温度相对应。 7.一某种聚合物材料作为两根管子接口法兰的密封垫圈,假设该材料的力学行为可以用 Maxwell 模型来描述。已知垫圈压缩应变为

12、 0.2,初始模量为 3 106N/m2,材料应力松弛时间为 300d,管内流体的压力为 0.3 106N/m2,试问多少天后接口处将发生泄露? 答: 根据 Maxwell 模型, , 由题当, ,接口处将发生泄漏, 由题知 , =300d, 带入相关数据 得 t=208d 第八章 聚合物的屈服和断裂 2画出非晶态和晶态聚合物拉伸时典型的应力 -应变曲线,指出曲线上的特征点及相应的应力、应变名称。 答: 非 晶态聚合物 典型应力 -应变曲线 晶态聚合物典型应力 -应变曲线 7 下列几种聚合物的抗冲击性能如何?为什么?( TTg) ( 1)聚苯乙烯;( 2)聚苯醚;( 3)聚碳酸酯; (4)AB

13、S;(5)聚乙烯 答: (1)聚苯乙烯,因主链挂上体积庞大的侧基苯环,使之称为难以改变构象的刚性链,使得冲击性能不好,为典型的脆性聚合物。 ( 2)聚苯醚,因主链含有刚性的苯环,故为难以改变构象的刚性链,冲击性能不好。 ( 3)聚碳酸酯,由于主链中含酯基,在 -120 摄氏度可产生局部模式运动,称之为 转变。在 TTg时,由于外力作用, 转变吸收冲击能,使聚合物上的能量得以分散,因此冲击性能好,在常温下可进行冷片冲压成型,即常温塑性加工。 ( 4) ABS,因 ABS具有多相结构,支化的聚丁二烯相当于橡胶微粒分散在连续的塑料相中,相当于大量的应力集中物,当材料受到冲击时,它们可以引发大量的裂纹

14、,从而能吸收大量的冲击能,所以冲击性能好。 ( 5)聚乙烯,由于聚 乙烯链节结构极为规整和对称,体积又小,所以聚乙烯非常容易结晶,而且结晶度比较高。由于结晶限制了链段的运动,使之柔性不能表现出来,所以冲击性能不好。高压聚乙烯由于支化多,破坏了链的规整性,结晶度低些,冲击性能稍好些。 第九章 聚合物的流变性 4.讨论聚合物的分子量和分子量分布对熔体粘度和流变性的影响。 答:低切变速率下,当 时,略依赖于聚合物化学结构和温度,当时,与聚合物化学结构,分子量分布及温度无关;增大切变速率,链缠结结构破坏程度增加,分子量对体系粘度影响减小。 聚合物熔 体非牛顿流动时的切变速率随分子量加大向低切变速率移动

15、,剪切引起的粘度下降,分子量低的试样也比分子量高的试样小一些。分子量相同时分子量分布宽的聚合物熔体出现非牛顿流动的切变速率比分布窄的要低的多。 5.从结构观点分析温度、切变速率对聚合物熔体粘度的影响规律,举例说明这一规律在成型加工中的应用。 答: a.温度升高,粘度下降,在较高温度的情况下,聚合物熔体内自由体积相当大,流动粘度的大小主要取决于高分子链本身的结构,即链段跃迁运动的能力,一般分子链 刚性越大 ,或分子间作用力越大,则流动活化能越高,这类聚合物是温敏 性的;当温度处于一定范围即 TgTTg+100K 时,由于自由体积减小,阶段跃迁速率不仅与其本身的跃迁能力有 关 ,也与自由体积大小有

16、关。 b柔性链高 分子表观粘度随切变速率增加而明显下降,刚性链高分子表观粘度也随 切 变速率增加而下降,但降幅较小,因为切变速率增加,柔性链易改变构象,即通过链段运动破坏原有缠结,降低流动阻力,刚性链链段较长,构象改变较困难,随切变阻力增加,阻力变化不大。 第十章 聚合物的电学性能、热性能和光学性能 2.比较聚合物介电松弛和力学松弛的异同点。 答:高聚 物的力学松弛是高聚物的力学性能随时间变化而产生的一系列现象,包括静态力学松弛 ( 应力松弛和蠕变 ) 和动态力学松弛 ( 滞 后和力学 损耗 ) ;而介电松弛是高 聚物的电学性能介电常数和 介质损耗随时间的变化而产生的一些列现象;期相同点在 于

17、两者都是高聚物内部的运动形式随着外界刺激的变化而做出相应而产生的一些列性能的变化;不同点在于力 学松弛的产生是由于高分子不同尺度的运动单元的运动难易程度造成,而介电松弛是高分子内部偶极子在不同电场条件下 极化的 难易程度造成 ;二者都反映了在一定的外场作用下高聚物内部运动形式与性能的一定关系。 3.讨论影响聚合物介电常数和介电损耗的因素。 答:影响因素 ( 1)电场频率的影响:在低频区,介电常数达到最大值,而介电 损耗最小;在光频区,介电常数很小,介电损耗也小。 ( 2)温度的影响:温度过低 和 都很小;升高温度, 和 都增大;进一步升高温度, 又变得很小,而介电常数通过一个峰值后缓慢的随温度

18、升高而下降。 ( 3)增塑剂的影响:介电损耗随增塑剂含量的增加而移向低温。 ( 4)杂质的影响:对于非极性高聚物来说,杂质是引起介电损耗的主要原因。 7.什么叫聚合物的耐热性和热稳定性?如何提高聚合物的耐热性和热 稳定性? 答 : ( 1)耐热性:聚合物材料抵抗热变形和热分解的能力。 热稳定性:聚合物耐热降解或老化的性能。 ( 2)提高聚合物耐热性的方法 :a.增加高分子链的刚性; b.提高聚合物的结晶性; c.进行交联。 提高热稳定性的方法: a.在高分子链中避免弱键; b.在高分子主链中避免一长串连接的亚甲基,并尽量引入较大比例的环状结构; c.合成 “ 梯形 ” 、 “ 螺形 ” 和 “ 片状 ” 结构的聚合物。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报