收藏 分享(赏)

大一高数课件第七章 7-3-1.ppt

上传人:kpmy5893 文档编号:10090401 上传时间:2019-10-08 格式:PPT 页数:36 大小:1.28MB
下载 相关 举报
大一高数课件第七章  7-3-1.ppt_第1页
第1页 / 共36页
大一高数课件第七章  7-3-1.ppt_第2页
第2页 / 共36页
大一高数课件第七章  7-3-1.ppt_第3页
第3页 / 共36页
大一高数课件第七章  7-3-1.ppt_第4页
第4页 / 共36页
大一高数课件第七章  7-3-1.ppt_第5页
第5页 / 共36页
点击查看更多>>
资源描述

1、,一、向量在轴上的投影与投影定理,证,于是,空间两向量的夹角的概念:,类似地,可定义向量与一轴或空间两轴的夹角.,特殊地,当两个向量中有一个零向量时,规定它们的夹角可在0与 之间任意取值.,空间一点在轴上的投影,空间一向量在轴上的投影,关于向量的投影定理(1),证,定理1的说明:,投影为正;,投影为负;,投影为零;,(4) 相等向量在同一轴上投影相等;,关于向量的投影定理(2),(可推广到有限多个),二、向量在坐标轴上的分向量与向量的坐标,由例1知,向量在 轴上的投影,向量在 轴上的投影,向量在 轴上的投影,按基本单位向量的坐标分解式:,在三个坐标轴上的分向量:,向量的坐标:,向量的坐标表达式

2、:,特殊地:,向量的加减法、向量与数的乘法运算的坐标表达式,解,由题意知:,非零向量 的方向角:,非零向量与三条坐标轴的 正向的夹角称为方向角.,三、向量的模与方向余弦的坐标表示式,由图分析可知,向量的方向余弦,方向余弦通常用来表示向量的方向.,向量模长的坐标表示式,向量方向余弦的坐标表示式,方向余弦的特征,特殊地:单位向量的方向余弦为,解,所求向量有两个,一个与 同向,一个反向,或,解,解,向量在轴上的投影与投影定理.,向量在坐标轴上的分向量与向量的坐标.,向量的模与方向余弦的坐标表示式.,四、小结,(注意分向量与向量的坐标的区别),思考题,思考题解答,对角线的长为,练 习 题,3、已知两点,和,则向量,_,,=_,方向余弦,=_;,=_;,=_;,_ ,_ ,_;,方向,4、 已知向量,及,;,练习题答案,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报