1、第五章 微分方程模型,动态模型,描述对象特征随时间(空间)的演变过程,分析对象特征的变化规律,预报对象特征的未来性态,研究控制对象特征的手段,根据函数及其变化率之间的关系确定函数,微分方程建模,根据建模目的和问题分析作出简化假设,按照内在规律或用类比法建立微分方程,5.1 传染病模型,问题,描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型,已感染人数 (病人) i(t),每个病人每天有效接触(足以使人致病)人数为,模型1,假设,若有效接触的是病人,则不能使病人数增加,建模,?,模型2,区分已感染者(病
2、人)和未感染者(健康人),假设,1)总人数N不变,病人和健康 人的 比例分别为,2)每个病人每天有效接触人数为, 且使接触的健康人致病,建模, 日 接触率,SI 模型,模型2,tm传染病高潮到来时刻, (日接触率) tm,病人可以治愈!,?,t=tm, di/dt 最大,模型3,传染病无免疫性病人治愈成为健康人,健康人可再次被感染,增加假设,SIS 模型,3)病人每天治愈的比例为, 日治愈率,建模, 日接触率,1/ 感染期, 一个感染期内每个病人的有效接触人数,称为接触数。,模型3,接触数 =1 阈值,感染期内有效接触感染的健康者人数不超过病人数,模型2(SI模型)如何看作模型3(SIS模型)
3、的特例,模型4,传染病有免疫性病人治愈后即移出感染系统,称移出者,SIR模型,假设,1)总人数N不变,病人、健康人和移出者的比例分别为,2)病人的日接触率 , 日治愈率, 接触数 = / ,建模,需建立 满足的方程,模型4,SIR模型,无法求出 的解析解,在相平面 上 研究解的性质,模型4,消去dt,SIR模型,相轨线 的定义域,在D内作相轨线 的图形,进行分析,模型4,SIR模型,相轨线 及其分析,s(t)单调减相轨线的方向,im,P1: s01/ i(t)先升后降至0,P2: s01/ i(t)单调降至0,1/阈值,模型4,SIR模型,预防传染病蔓延的手段, (日接触率) 卫生水平,(日治
4、愈率) 医疗水平,传染病不蔓延的条件s01/, 的估计,降低 s0,提高 r0,提高阈值 1/,模型4,SIR模型,被传染人数的估计,记被传染人数比例,i,0,P1, 小, s0 1,提高阈值1/降低被传染人数比例 x,s0 - 1/ = ,过滤嘴的作用与它的材料和长度有什么关系,人体吸入的毒物量与哪些因素有关,其中哪些因素影响大,哪些因素影响小。,模型分析,分析吸烟时毒物进入人体的过程,建立吸烟过程的数学模型。,设想一个“机器人”在典型环境下吸烟,吸烟方式和外部环境认为是不变的。,问题,5.2 香烟过滤嘴的作用,模型假设,定性分析,1)l1烟草长, l2过滤嘴长, l = l1+ l2,毒物
5、量M均匀分布,密度w0=M/l1,2)点燃处毒物随烟雾进入空气和沿香烟穿行的数量比是a:a, a+a=1,3)未点燃的烟草和过滤嘴对随烟雾穿行的毒物的(单位时间)吸收率分别是b和,4)烟雾沿香烟穿行速度是常数v,香烟燃烧速度是常数u, v u,Q 吸一支烟毒物进入人体总量,模型建立,t=0, x=0,点燃香烟,q(x,t) 毒物流量,w(x,t) 毒物密度,1) 求q(x,0)=q(x),t时刻,香烟燃至 x=ut,1) 求q(x,0)=q(x),2) 求q(l,t),3) 求w(ut,t),4) 计算 Q,结果分析,烟草为什么有作用?,1)Q与a,M成正比, aM是毒物集中在x=l1 处的吸
6、入量,2) 过滤嘴因素,, l2 负指数作用,是毒物集中在x=l 处的吸入量,3)(r) 烟草的吸收作用,b, l1 线性作用,带过滤嘴,不带过滤嘴,结果分析,4) 与另一支不带过滤嘴的香烟比较,w0, b, a, v, l 均相同,吸至 x=l1扔掉,提高 -b 与加长l2,效果相同,5.3 人口预测和控制,年龄分布对于人口预测的重要性,只考虑自然出生与死亡,不计迁移,人口发展方程,人口发展方程,一阶偏微分方程,人口发展方程,已知函数(人口调查),生育率(控制人口手段),生育率的分解,总和生育率,h生育模式,0,人口发展方程和生育率,总和生育率控制生育的多少,生育模式控制生育的早晚和疏密,正
7、反馈系统,滞后作用很大,人口指数,1)人口总数,2)平均年龄,3)平均寿命,t时刻出生的人,死亡率按 (r,t) 计算的平均存活时间,4)老龄化指数,控制生育率,控制 N(t)不过大,控制 (t)不过高,5.4 万有引力定律的发现,背景,航海业发展,天文观测精确,“地心说”动摇,哥白尼:“日心说”,伽里略:落体运动,开普勒:行星运动三定律,变速运动的计算方法,牛顿:一切运动有力学原因,牛顿运动三定律,牛顿:研究变速运动,发明微积分(流数法),开普勒三定律,牛顿运动第二定律,万有引力定律,自然科学之数学原理(1687),模型假设,极坐标系 (r,),太阳 (0,0),1. 行星轨道,a长半轴, b短半轴, e离心率,3. 行星运行周期 T,行星位置:向径,2. 单位时间 扫过面积为常数 A,m 行星质量, 绝对常数,4. 行星运行受力,模型建立,向径 的基向量,模型建立,万有引力定律,需证明 4A2/p =kM (与哪一颗行星无关),A单位时间 扫过面积,O (太阳),P (行星),r,