1、平面向量的数量积复习课说 课 稿黄州区一中 李世品尊敬的各位评委、各位老师:大家好!今天我说课的题目是平面向量的数量积 复习课。下面我将从一下几个方面阐述我对本节课的分析和设计。一、教材分析:向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景。将平面向量引入高中课程,是现行数学教材的重要特色之一。由于向量既能体现“形”的直观位置特征,又具有“数”的良好运算性质,是数形结合和转换的桥梁。而这一切之所以能够实现,平面向量的数量积功不可没。 平面向量的数量积是数学必修 4 第二章第四节的内容。平面向量的数量积是继向量的线性运算之后,且已具备了一定
2、的对向量的理解和应用能力的基础上进行的又一个重要运算,同时为探索空间向量的研究奠定了理论基础,也是高中数学的一个重要概念,在数学、物理等学科中应用十分广泛。本节内容教材共安排两课时,其中第一课时主要研究数量积的概念,第二课时主要研究数量积的坐标运算,本节复习课是把这两节并一节来复习的。本节课数量积的概念既是对物理背景的抽象,又是研究性质和运算律的基础。同时也因为在这个概念中,既有长度又有角度,既有形又有数,是代数、几何与三角的最佳结合点,不仅应用广泛,高考中也经常考察的内容,而且很好的体现了数形结合的数学思想和类比思想,使得数量积的概念成为本节课的核心概念,自然也是本节课教学的重点之一。二、教
3、学目标的设计:1、知识与技能:(1)理解平面向量的数量积的含义及物理意义。 (2)了解平面向量的数量积与向量投影的关系。(3)掌握平面向量的数量积的坐标表达式,会进行平面向量的数量积的运算。(4)能运用平面向量的数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 2、过程与方法:(1)通过本节课的复习培养学生应用平面向量的数量积解决相关问题的能力。(2)通过师生共同探讨培养“数形结合思想”与“分类讨论思想 ”的能力。3、情感态度与价值观:培养学生发现问题的意识和运用知识的意识,让学生参与解决相关问题的全过程,享受成功的喜悦,感受数学的魅力,激发学生学习数学的兴趣。三、重、难点分析
4、:1、重点:理解平面向量的数量积及其几何意义;掌握平面向量的数量积的坐标表运算;用平面向量的数量积解决夹角、长度及垂直等问题。2、难点:平面向量的数量积的综合应用。四、教学方法与学法分析:1、教学方法:本节课是高三第一轮复习中的平面向量数量积的复习课 ,重点理解平面向量的数量积及其几何意义,掌握平面向量数量积的坐标运算。用数量积求夹角、距离、判断垂直等问题及平面向量数量积的。培养学生类比思想以及数形结合思想。2、教学手段:利用多媒体优良的传播功能,大容量的信息的呈现和生动形象的演示对提高学生学习兴趣,激活学生思维有积极作用;利用黑板适当的板书弥补多媒体技术在即时信息,反馈和信息的储存方面的不足
5、。3、学法指导:根据高三学生已具备了一定分析问题、解决问题的能力和积极参与意识,自主探索意识,由本节课的内容特点及学生已有的知识、能力、情感等因素定为问题探究式学法。五、教学过程分析:(一) 考纲要求: (1)理解平面向量的数量积的含义及物理意义。 (2)了解平面向量的数量积与向量投影的关系。(3)掌握平面向量的数量积的坐标表达式,会进行平面向量的数量积的运算。(4)能运用平面向量的数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 设计意图:在高三第一轮复习中,首先应该了解考纲才能更清楚地知道高考所考的内容及高考复习中难易度的把握。(二) 命题趋势:平面向量的数量积运算是高考的
6、重点内容之一,对本单元的考查多以选择题、填空题的形式出现,问题的档次为中、低档题,有时也有解答题。主要考查夹角、长度、垂直等问题,还易与其他知识有机结合( 如与函数、三角函数、数列、平面几何、解析几何、力、位移等知识有机结合),在知识点的交汇点处命题是高考的一个热点,综合性较强、难度系数较大 .设计意图:让学生了解命题的形式、趋势、档次、考查的内容(如夹角、长度、垂直问题)及与其他知识的有机结合。(三) 知识梳理:1、平面向量数量积:(1) 向量的夹角:已知两个非零向量 和 ,作 ,则AOB 叫做ab,OAaBb向量 和 的夹角,规定其范围是 .ab0,(2) 数量积的定义:已知两个非零向量
7、与 ,它们的夹角是 ,则数量| | |cos叫a与 的数量积,记作 ,即 = | | |cos. (注意:投影是数量,而不是向量 .)ab 规定 与任何向量的数量积为 0 奎 屯王 新 敞新 疆 0特别地,当 与 同向时, = | | |;当 与 反向时, = | | |.bab(3) 向量的投影:设 是向量 与 的夹角,则| |cos叫做 在 上的投影. (注意:投影是数量,而不是向量 .)(4) 数量积的几何意义:数量积 等于 的长度与 在 方向上投影| |cos的乘积. abbab(5) 数量积的物理意义: |FScosW2、两个向量的数量积的性质:设 、 为两个非零向量(1) = 0a
8、b(2) = | |2 (3) cos = |(4) | | | | |ab3、平面向量数量积的坐标表示:设 ,),(1yxa),(2yxb .21yx . (两个非零向量)0 .21|a 向量的夹角 cos 221yx( ).04、平面向量数量积的运算律: 交换律: = ab 数乘结合律:( ) = ( ) = ( )ab 分配律:( + ) = + cc注意:1) ;ab2) ;()()3) .00a 或设计意图:复习回顾,并梳理所学过的关于平面向量的数量积有关的知识,完善知识结构,充分暴露学生的易错易混点,进行学法指导,为本节课中的平面向量数量积的应用储备知识基础。(四) 填空题:1.
9、已知向量 与 的夹角为 120,且 ,那么 的值为 . ab|4abab2. 已知向量 , ,且 ,则 . (2,4)(1,2)()c|c3. 已知 且 ,则向量 与 夹角 . |1|, 4. 若 , ,则 在 方向上的投影为 . ,3,7设计意图:利用现有的知识与经验及根据梳理的知识尝试性做些基础性的问题,为利用数量积解决相关综合问题奠定基础。(五) 例题研究:考点一:两向量的夹角问题例 1:已知 , ,求 与 的夹角. |a, 12b1()2abab设计意图:因为两个非零向量的夹角是研究数量积必不可少的知识,也是几何中经常研究的问题。该例题是课本上例题改编的,利用平方差公式求出 后,直接利
10、用夹角公|b式即可,是对学生的初始训练,有利于给学生自信,有利于知识的储存。考点二:向量的模与垂直问题例 2:已知 ,向量 与 的夹角为 120. |4|8ab, ab(1) 计算: ;(2) 当 k 为何值时, ?(2)()k设计意图:探究向量的长度与垂直问题中,有梯度的设置问题有助于对学生的思维提供强大动力,激发学生的探究欲望。考点三:向量数量积的综合应用问题例 3:已知 A (3 , 0),B (0 , 3),C (cos , sin),O 为坐标原点 . (1) 若 ,求 sin2 的值;(2) 若 ,且 (0, ),求 与 的夹角. |13OBC设计意图:为了更好的理解向量的数量积,
11、从几何的角度研究问题,与三角函数有机结合,将学习任务向外延伸,体现知识的应用价值,同时也为解决几何中的长度、角度和垂直问题奠定了新的认识。(六)课堂练习:1. 在ABC 中,C=90, , ,则 k 的值是( )(,1)Ak(2,3)A. B. C. 5 D. - 5 322. 已知向量 , ,|4|3ab, 2)(6ab((1) 求 与 的夹角 ;(2) 求 ;|(3) 若 , ,求ABC 的面积. BCA3. 已知向量 ,若 其中 k,t 为正数,当(1,),), 2(1)xt, 1yabkt时,求实数 k 的最大值. xy设计意图:课堂练习是学生掌握和应用所学知识提高技能所必要的途径,根
12、据学生的认知规律、结合学生的基础情况有针对性的巩固知识点,选择了基础题和综合应用题部分。(七)课堂小结:1、本节课主要复习了平面向量数量积定义、性质、运算律、几何意义及其简单应用. 2、利用平面向量的数量积运算解决了有关夹角、垂直、长度等问题 .设计意图:总结本节课所呈现的知识点和所解决的问题,加深印象。(八)课后作业:模块总复习:P 170 第三讲 平面向量的数量积设计意图:课外作业是为了巩固本堂课所学知识,检测所学内容,为下节课综合应用用打好基础。七、评价分析:评价方式的转变是新课程改革的一大亮点,课标指出:“相对于结果,过程更能反映每个学生的发展变化,体现出学生成长的历程”。因此,数学学
13、习的评价既要重视结果,也要重视过程。结合“课标” 对数学学习的评价建议,对本节课的教学我主要通过以下几种方式进行:1、 通过与学生的问答交流,发现其思维过程,在鼓励的基础上,纠正偏差,并对其进行定性的评价。2、在学生讨论、交流、协作时,教师通过观察,就个别或整体参与活动的态度和表现做出评价,以此来调动学生参与活动的积极性。3、 通过练习来检验学生学习的效果,并在讲评中,肯定优点,指出不足。4、 通过作业,反馈信息,再次对本节课做出评价,以便查漏补缺。平面向量的数量积 复习课说 课 稿全省民族中小学数学教学研讨会暨全省民族中小学理科教学专业委员会第十四届数学年会学校:鸡东县朝鲜族中学教者:马 哲 龙日期:2009 年 11 月 5 日