收藏 分享(赏)

高考复习——数学二项式定理复习.ppt

上传人:wspkg9802 文档编号:9880827 上传时间:2019-09-14 格式:PPT 页数:43 大小:817.50KB
下载 相关 举报
高考复习——数学二项式定理复习.ppt_第1页
第1页 / 共43页
高考复习——数学二项式定理复习.ppt_第2页
第2页 / 共43页
高考复习——数学二项式定理复习.ppt_第3页
第3页 / 共43页
高考复习——数学二项式定理复习.ppt_第4页
第4页 / 共43页
高考复习——数学二项式定理复习.ppt_第5页
第5页 / 共43页
点击查看更多>>
资源描述

1、第3课时 二项式定理,1二项式定理公式(ab)n(nN*)叫做二项式定理其中Cnk(k0,1,2,n)叫做 Tk1 叫做二项展开式的通项,它表示第k1项,基础知识梳理,Cn0anCn1an1b,CnkankbkCnnbn,二项式系数,Cnkankbk,基础知识梳理,思考?,在公式中,交换a,b的顺序是否有影响? 【思考提示】 从整体看,(ab)n与(ba)n相同,但具体到某一项是不同的,如第k1项Tk1Cnkankbk,Tk1Cnkbnkak.,2二项式系数的性质 (1)对称性:与首末两端“ ”的两个二项式系数相等,即CnmCnnm.,基础知识梳理,等距离,(3)各二项式系数的和(ab)n的展

2、开式的各个二项式系数的和等于2n,即2n.二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即Cn1Cn3Cn5Cn0Cn2Cn4 .,基础知识梳理,Cn0Cn1Cn2Cnr,Cnn,2n1,A16 B70 C1792 D560 答案:C,三基能力强化,2二项式(a2b)n展开式中的第二项的系数是8,则它的第三项的二项式系数为( ) A24 B18 C16 D6 答案:D,三基能力强化,3(1x)2n(nN)的展开式中,系数最大的项是( )答案:C,三基能力强化,4若(ax1)5的展开式中x3的系数是80,则实数a的值是_ 答案:2,三基能力强化,答案:9,三基能力强化,通项公式

3、中含有a,b,n,r,Tr15个元素,只要知道了其中的4个元素,就可以求出第5个元素,在求展开式中的指定项问题时,一般是利用通项公式,把问题转化为解方程(或方程组)这里必须注意隐含条件n,r均为非负整数且rn.,课堂互动讲练,课堂互动讲练,【思路点拨】 利用通项公式求解,课堂互动讲练,课堂互动讲练,【点评】 (1)正确区别二项展开式的某一项的二项式系数、项的系数、项三个不同概念 (2)对于通项,要注意以下几点: 它表示二项展开式中的第r1项,只要r确定,该项也随即被确定; 公式表示的是第r1项,而不是第r项; 公式中a,b的位置不能颠倒,它们的指数和一定为n.,课堂互动讲练,课堂互动讲练,(1

4、)求n; (2)求含x2的项的系数; (3)求展开式中所有的有理项,课堂互动讲练,课堂互动讲练,rZ,k应为偶数 k可取2,0,2,即r可取2,5,8. 所以第3项,第6项与第9项为有理项,它们分别为,课堂互动讲练,【规律小结】 (1)解此类问题可以分两步完成:第一步是根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n和r的隐含条件,即n,r均为非负整数,且nr);第二步是根据所求的指数,再求所求解的项;,课堂互动讲练,(2)求二项展开式中的有理项,一般是根据通项公式所得到的项,其所有的未知数的指数恰好都是整数的项解这种类型的问题必须合并通项公式中同一字母的指

5、数,根据具体要求,令其属于整数,再根据数的整除性来求解若求二项展开式中的整式项,则其通项公式中同一字母的指数应是非负整数,求解方式与求有理项的方式一致,课堂互动讲练,本例题已知条件不变,问:“这个展开式中是否含有x的一次项?”若没有,请说明理由,若有,请求出,课堂互动讲练,互动探究,课堂互动讲练,赋值法是求展开式中的系数与系数和的常用方法,注意赋值要有利于问题的解决,可以取一个或几个值,常赋的值为0,1.,课堂互动讲练,一般地,要使展开式中项的关系变为系数的关系,令x0得常数项,令x1可得所有项系数和,令x1可得奇数次项系数之和与偶数次项系数之和的差,而当二项展开式中含负值项时,令x1则可得各

6、项系数绝对值之和,课堂互动讲练,课堂互动讲练,(解题示范)(本题满分12分) 已知(12x)7a0a1xa2x2a7x7. 求:(1)a1a2a7; (2)a1a3a5a7; (3)a0a2a4a6; (4)|a0|a1|a2|a7|.,课堂互动讲练,【思路点拨】 二项展开式是一个恒等式即对任意的xR都成立,因而可采用赋值完成 【解】 令x1,则 a0a1a2a3a4a5a6a71 令x1,则 a0a1a2a3a4a5a6a737 2分,(1)a0C701,a1a2a3a72. 3分 (2)()2得:,课堂互动讲练,(4)法一:(12x)7展开式中,a0,a2,a4,a6大于零,而a1,a3,

7、a5,a7小于零, |a0|a1|a2|a7| (a0a2a4a6)(a1a3a5a7), 1093(1094)2187. 12分 法二:|a0|a1|a2|a7|, 即(12x)7展开式中各项的系数和,令x1 |a0|a1|a2|a7|372187. 12分,课堂互动讲练,【点评】 求关于展开式中系数和问题,往往根据展开式的特点赋给其中字母一些特殊的数,如1,1,.,课堂互动讲练,(本题满分12分)在二项式(2x3y)9展开式中,求: (1)二项式系数之和; (2)各项系数之和; (3)所有奇数项系数之和; (4)系数绝对值的和 解:设(2x3y)9a0x9a1x8ya2x7y2a9y9 1

8、分 (1)二项式系数之和为:C90C91C92C9929. 3分,课堂互动讲练,高考检阅,(2)各项系数之和为:a0a1a2a9. 令x1,y1, 得a0a1a2a9(23)91.6分 (3)由(2)知a0a1a2a91. 7分 令x1,y1,得 a0a1a2a3a8a9(23)959. 8分,课堂互动讲练,(4)|a0|a1|a2|a9| a0a1a2a8a959. 12分,课堂互动讲练,1根据二项式系数的性质,n为奇数时中间两项的二项式系数最大,n为偶数时中间一项的二项式系数最大 2求展开式中系数最大项与求二项式系数最大项不同,求展开式中系数最大项的步骤是:先假定第r1项系数最大,则它比相

9、邻两项的系数都不小,列出不等式组并求解此不等式组求得,课堂互动讲练,课堂互动讲练,(1)二项式系数最大的项; (2)系数的绝对值最大的项,课堂互动讲练,【思路点拨】 根据二项式系数的性质,列方程求解n,系数绝对值最大问题需要列不等式组求解 【解】 由题意知,22n2n992, 即(2n32)(2n31)0, 2n32,解得n5.,(2)设第r1项的系数的绝对值最大, 则TrTr1,且Tr1Tr2.,课堂互动讲练,课堂互动讲练,课堂互动讲练,【思维总结】 在运用二项式定理时不能忽视展开式中系数的正负符号当然还需考虑二项式系数与展开式某项的系数之间的差异:二项式系数只与二项式的指数和项数有关,与二

10、项式无关;而项的系数不仅与二项式的指数和项数有关,还与二项式有关值得注意的是,本例中是求“系数的绝对值最大的项”,若改为“系数最大的项”又该如何处理?因为第4项的系数为负值,所以系数最大项必是第3项或第5项中的某一项比较这两项的系数C10228与C10426大小即可,课堂互动讲练,1二项式定理及通项公式的应用 (1)对于二项式定理,不仅要掌握其正向运用,而且应学会逆向运用与变形运用有时先作适当变形后再展开较为简便,有时需适当配凑后逆用二项式定理,规律方法总结,(2)运用二项式定理一定要牢记通项Tk1Cnkankbk,注意(ab)n与(ba)n虽然相同,但用二项式定理展开后,具体到它们展开式的某一项时是不相同的,一定要注意顺序问题 (3)在通项公式Tk1Cnkankbk(nN*)中,要注意有nN*,kN,kn,即k0,1,2,n.,规律方法总结,2项的系数与项的二项式系数的区别 利用通项公式求二项展开式中指定的项(如常数项、系数最大项、有理项等)或某些项的系数是本节重点内容,解题时,要正确区分展开式中的“项”、“项的系数”、“项的二项式系数”等概念的异同如(12x)5的展开式中的第3项为T3C5213(2x)240x2,其中该项的系数为C522240,而该项的二项式系数为C5210.,规律方法总结,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报