1、2.1 公平的席位分配,问题,三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。,现因学生转系,三系人数为103, 63, 34, 问20席如何分配。,若增加为21席,又如何分配。,比例加惯例,对丙系公平吗,“公平”分配方法,衡量公平分配的数量指标,当p1/n1= p2/n2 时,分配公平,p1/n1 p2/n2 对A的绝对不公平度,p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10,p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100,
2、p1/n1 p2/n2=5,但后者对A的不公平程度已大大降低!,虽二者的绝对不公平度相同,若 p1/n1 p2/n2 ,对 不公平,A,p1/n1 p2/n2=5,公平分配方案应使 rA , rB 尽量小,设A, B已分别有n1, n2 席,若增加1席,问应分给A, 还是B,不妨设分配开始时 p1/n1 p2/n2 ,即对A不公平, 对A的相对不公平度,将绝对度量改为相对度量,类似地定义 rB(n1,n2),将一次性的席位分配转化为动态的席位分配, 即,“公平”分配方法,若 p1/n1 p2/n2 ,定义,1)若 p1/(n1+1) p2/n2 ,,则这席应给 A,2)若 p1/(n1+1)
3、p2/n2 ,,3)若 p1/n1 p2/(n2+1),,应计算rB(n1+1, n2),应计算rA(n1, n2+1),若rB(n1+1, n2) rA(n1, n2+1), 则这席应给,应讨论以下几种情况,初始 p1/n1 p2/n2,问:,p1/n1p2/(n2+1) 是否会出现?,A,否!,若rB(n1+1, n2) rA(n1, n2+1), 则这席应给 B,当 rB(n1+1, n2) rA(n1, n2+1), 该席给A,该席给A,否则, 该席给B,推广到m方分配席位,该席给Q值最大的一方,Q 值方法,三系用Q值方法重新分配 21个席位,按人数比例的整数部分已将19席分配完毕,甲
4、系:p1=103, n1=10 乙系:p2= 63, n2= 6 丙系:p3= 34, n3= 3,用Q值方法分配第20席和第21席,第20席,第21席,同上,Q3最大,第21席给丙系,甲系11席,乙系6席,丙系4席,Q值方法分配结果,公平吗?,Q1最大,第20席给甲系,进一步的讨论,Q值方法比“比例加惯例”方法更公平吗?,席位分配的理想化准则,已知: m方人数分别为 p1, p2, , pm, 记总人数为 P= p1+p2+pm, 待分配的总席位为N。,设理想情况下m方分配的席位分别为n1,n2, , nm (自然应有n1+n2+nm=N),,记qi=Npi /P, i=1,2, , m,n
5、i 应是 N和 p1, , pm 的函数,即ni = ni (N, p1, , pm ),若qi 均为整数,显然应 ni=qi,qi=Npi /P不全为整数时,ni 应满足的准则:,记 qi =floor(qi) 向 qi方向取整; qi+ =ceil(qi) 向 qi方向取整.,1) qi ni qi+ (i=1,2, , m),2) ni (N, p1, , pm ) ni (N+1, p1, , pm) (i=1,2, , m),即ni 必取qi , qi+ 之一,即当总席位增加时, ni不应减少,“比例加惯例”方法满足 1),但不满足 2),Q值方法满足 2),但不满足 1)。令人遗憾
6、!,问 题,在一次使用中录像带已经转过大半,计数器读数为 4450,问剩下的一段还能否录下1小时的节目?,要求,不仅回答问题,而且建立计数器读数与 录像带转过时间的关系。,思考,计数器读数是均匀增长的吗?,2.2 录像机计数器的用途,经试验,一盘标明180分钟的录像带从头走到尾,时间用了184分,计数器读数从0000变到6061。,录像机计数器的工作原理,录像带运动,问题分析,观察,计数器读数增长越来越慢!,模型假设,录像带的运动速度是常数 v ;,计数器读数 n与右轮转数 m成正比,记 m=kn;,录像带厚度(加两圈间空隙)为常数 w;,空右轮盘半径记作 r ;,时间 t=0 时读数 n=0
7、 .,建模目的,建立时间t与读数n之间的关系,(设v,k,w ,r为已知参数),模型建立,建立t与n的函数关系有多种方法,1. 右轮盘转第 i 圈的半径为r+wi, m圈的总长度 等于录像带在时间t内移动的长度vt, 所以,2. 考察右轮盘面积的 变化,等于录像带厚度 乘以转过的长度,即,模型建立,思 考,2种建模方法得到相似的同一结果,模型中有待定参数,一种确定参数的办法是测量或调查,请设计测量方法。,思 考,参数估计,另一种确定参数的方法测试分析,将模型改记作,只需估计 a,b,理论上,已知t=184, n=6061, 再有一组(t, n)数据即可,实际上,由于测试有误差,最好用足够多的数
8、据作拟合,现有一批测试数据:,用最小二乘法可得,模 型 检 验,应该另外测试一批数据检验模型:,模 型 应 用,回答提出的问题:由模型算得 n = 4450 时 t = 116.4分, 剩下的录像带能录 184-116.4= 67.6分钟的节目。,揭示了“t 与 n 之间呈二次函数关系”这一普遍规律, 当录像带的状态改变时,只需重新估计 a,b 即可。,问题,双层玻璃窗与同样多材料的单层玻璃窗相比,减少多少热量损失,假设,热量传播只有传导,没有对流,T1,T2不变,热传导过程处于稳态,材料均匀,热传导系数为常数,建模,热传导定律,Q 单位时间单位面积传导的热量,T温差, d材料厚度, k热传导
9、系数,2.3 双层玻璃窗的功效,Ta,Tb,记双层玻璃窗传导的热量Q1,Ta内层玻璃的外侧温度,Tb外层玻璃的内侧温度,建模,记单层玻璃窗传导的热量Q2,双层与单层窗传导的热量之比,k1=410-3 8 10-3, k2=2.510-4, k1/k2=16 32,对Q1比Q2的减少量作最保守的估计,,取k1/k2 =16,建模,模型应用,取 h=l/d=4, 则 Q1/Q2=0.03,即双层玻璃窗与同样多材料的单层玻璃窗相比,可减少97%的热量损失。,结果分析,Q1/Q2所以如此小,是由于层间空气极低的热传导系数 k2, 而这要求空气非常干燥、不流通。,事实上,房间通过天花板、墙壁 损失的热量
10、会更多。因此,双层窗的功效不会如此之大,2.4 存贮模型,问 题,配件厂为装配线生产若干种产品,轮换产品时因更换设 备要付生产准备费,产量大于需求时要付贮存费。该厂 生产能力非常大,即所需数量可在很短时间内产出。,已知某产品日需求量100件,生产准备费5000元,贮存费 每日每件1元。试安排该产品的生产计划,即多少天生产 一次(生产周期),每次产量多少,使总费用最小。,要求,不只是回答问题,而且要建立生产周期、产量与 需求量、准备费、贮存费之间的关系。,问题分析与思考,每天生产一次,每次100件,无贮存费,准备费5000元。,日需求100件,准备费5000元,贮存费每日每件1元。,10天生产一
11、次,每次1000件,贮存费900+800+100 =4500元,准备费5000元,总计9500元。,50天生产一次,每次5000件,贮存费4900+4800+100 =122500元,准备费5000元,总计127500元。,平均每天费用950元,平均每天费用2550元,10天生产一次平均每天费用最小吗?,每天费用5000元,这是一个优化问题,关键在建立目标函数。,显然不能用一个周期的总费用作为目标函数,目标函数每天总费用的平均值,周期短,产量小,周期长,产量大,问题分析与思考,模 型 假 设,1. 产品每天的需求量为常数 r;,2. 每次生产准备费为 c1, 每天每件产品贮存费为 c2;,3.
12、 T天生产一次(周期), 每次生产Q件,当贮存量为零时,Q件产品立即到来(生产时间不计);,建 模 目 的,设 r, c1, c2 已知,求T, Q 使每天总费用的平均值最小。,4. 为方便起见,时间和产量都作为连续量处理。,模 型 建 立,贮存量表示为时间的函数 q(t),t=0生产Q件,q(0)=Q, q(t)以 需求速率r递减,q(T)=0.,一周期 总费用,每天总费用平均 值(目标函数),离散问题连续化,一周期贮存费为,A=QT/2,模型求解,求 T 使,模型分析,模型应用,c1=5000, c2=1,r=100,回答问题,经济批量订货公式(EOQ公式),每天需求量 r,每次订货费 c
13、1,每天每件贮存费 c2 ,,用于订货、供应、存贮情形,问:为什么不考虑生产费用?若考虑生产费用如何?,T天订货一次(周期), 每次订货Q件,当贮存量降到 零时,Q件立即到货。,允许缺货的存贮模型,A,B,当贮存量降到零时仍有需求r, 出现缺货,造成损失,原模型假设:贮存量降到零时Q件立即生产出来(或立即到货),现假设:允许缺货, 每天每件缺货损失费 c3 , 缺货需补足,一周期贮存费,一周期缺货费,周期T, t=T1贮存量降到零,一周期总费用,每天总费用 平均值 (目标函数),一周期总费用,求 T ,Q 使,为与不允许缺货的存贮模型相比,T记作T , Q记作Q,不允许缺货模型,记,允许缺货模
14、型,允许缺货模型,注意:缺货需补足,Q每周期初的存贮量,每周期的生产量R (或订货量),Q不允许缺货时的产量(或订货量),2.5 生猪的出售时机,饲养场每天投入4元资金,用于饲料、人力、设备,估计可使80千克重的生猪体重增加2公斤。,问题,市场价格目前为每千克8元,但是预测每天会降低 0.1元,问生猪应何时出售。,如果估计和预测有误差,对结果有何影响。,分析,投入资金使生猪体重随时间增加,出售单价随时间减少,故存在最佳出售时机,使利润最大,求 t 使Q(t)最大,10天后出售,可多得利润20元,建模及求解,生猪体重 w=80+rt,出售价格 p=8-gt,销售收入 R=pw,资金投入 C=4t
15、,利润 Q=R-C=pw -C,估计r=2,,若当前出售,利润为808=640(元),t 天出售,=10,Q(10)=660 640,g=0.1,敏感性分析,研究 r, g变化时对模型结果的影响,设g=0.1不变,t 对r 的(相对)敏感度,生猪每天体重增加量r 增加1%,出售时间推迟3%。,敏感性分析,研究 r, g变化时对模型结果的影响,设r=2不变,t 对g的(相对)敏感度,生猪价格每天的降低量g增加1%,出售时间提前3%。,强健性分析,保留生猪直到利润的增值等于每天的费用时出售,由 S(t,r)=3,建议过一周后(t=7)重新估计 , 再作计算。,研究 r, g不是常数时对模型结果的影响,w=80+rt w = w(t),p=8-gt p =p(t),若 (10%), 则 (30%),