收藏 分享(赏)

第5章-图像恢复.ppt

上传人:yjrm16270 文档编号:9813340 上传时间:2019-09-06 格式:PPT 页数:48 大小:4.89MB
下载 相关 举报
第5章-图像恢复.ppt_第1页
第1页 / 共48页
第5章-图像恢复.ppt_第2页
第2页 / 共48页
第5章-图像恢复.ppt_第3页
第3页 / 共48页
第5章-图像恢复.ppt_第4页
第4页 / 共48页
第5章-图像恢复.ppt_第5页
第5页 / 共48页
点击查看更多>>
资源描述

1、第五章 图像复原,5.1 概论 5.2 图像退化模型 5.3 噪声模型 5.4 线性位移不变的退化过程 5.5 图像复原方法,第五章 图像复原,使退化图像恢复本来面目的技术过程。“退化”在成像过程中,成像系统各种因素的影响,导致图像质量降低。方法:试图利用退化过程的先验知识,建立退化过程的数学模型,使已退化的图像恢复本来面目。“退化”的逆过程。处理目的:改善图像的质量。,5.1 概论,图像复原与图像增强的研究内容有一定的交叉性。图像增强是一种改进图像视觉效果的技术;图像复原是一种对退化(或品质下降)了的图像去除退化因素,并进而恢复或重建被退化了的图像的技术。,5.1 概论,5.2 图像的退化模

2、型,进行图像恢复的基本思路就是找出使原图像退化的因素,将图像的退化过程模型化,并据此采用相反的过程对图像进行处理,从而尽可能地恢复出原图像来。,5.2 图像的退化模型,5.2.1 常见退化现象的物理模型,常见的3种退化现象的物理模型示意图,5.2 图像的退化模型,5.2.2 图像退化模型的表示,图像的退化过程可以理解为施加于原图像上的运算和噪声两者联合作用的结果,由此可得到图像的退化模型为:,5.3 噪声和图像,数字图像中的噪声源来自于图像获取(将连续转为数字)以及传输过程 图像传感器会受到环境的干扰 图像在传输过程中会受到的干扰,5.3 图像噪声,5.3.1 常见的噪声及其概率密度函数,(1

3、)高斯噪声高斯噪声是一种源于电子电路噪声和由低照明度或高温带来的传感器噪声。高斯噪声也称为正态噪声,其概率密度函数为:,其中,高斯随机变量z表示灰度值;表示z的平均值或期望值;表示z的标准差,而标准差的平方2称为z的方差。,5.3 图像噪声,5.3.1 常见的噪声及其概率密度函数,高斯噪声是白噪声的一个特例。所谓白噪声,是指图像面上不同点的噪声是不相关的,其功率谱为常量,也即其强度不随频率的增加而衰减。,(1)高斯噪声,5.3 图像噪声,5.3.1 常见的噪声及其概率密度函数,(1)高斯噪声图像(直方图为高斯分布的图像),5.3 图像噪声,(1)高斯噪声污染的图像,5.3 图像噪声,5.3.1

4、 常见的噪声及其概率密度函数 (2)瑞利噪声瑞利噪声的概率密度函数为:,概率密度的均值和方差分别为:,5.3 图像噪声,5.3.1 常见的噪声及其概率密度函数 (2)瑞利噪声,概率密度函数,5.3 图像噪声,(2)瑞利噪声图像(直方图为瑞利分布的图像),5.3 图像噪声,(2)瑞利噪声污染的图像,5.3 图像噪声,5.3.1 常见的噪声及其概率密度函数 (3)均匀分布噪声均匀分布噪声的概率密度函数为:,概率密度的期望值和方差分别为:,5.3 图像噪声,5.3.1 常见的噪声及其概率密度函数 (3)均匀分布噪声,概率密度函数,5.3 图像噪声,(3)均匀噪声的图像,(直方图为均匀分布的图像),5

5、.3 图像噪声,(3)均匀噪声污染的图像,(4)脉冲噪声(椒盐噪声)(双极)脉冲噪声的概率密度为:,表示的脉冲噪声在Pa或Pb均不可能为零,且在脉冲可能是正的,也可能是负值的情况下,称为双极脉冲噪声。,通常,负脉冲以黑点(胡椒点)出现,正脉 冲以白点(盐点)出现,5.3 图像噪声,(4)脉冲噪声(椒盐噪声)表示的脉冲噪声如果Pa或Pb其中之一为零,则脉冲噪声称为单极脉冲噪声。通常情况下脉冲噪声总是数字化为允许的最大值或最小值,所以负脉冲以黑点(胡椒点)出现在图像中,正脉冲以白点(盐点)出现在图像中。,5.3 图像噪声,(4)脉冲噪声(椒盐噪声)(续2),5.3 图像噪声,概率密度函数,5.3.

6、1 常见的噪声及其概率密度函数,(4)脉冲噪声的图像,(直方图为脉冲的图像),5.3.1 常见的噪声及其概率密度函数,(4)脉冲噪声污染的的图像,5.3.1 常见的噪声及其概率密度函数,怎样判断一幅图像受某种噪声污染,5.3.1 常见的噪声及其概率密度函数,怎样判断一幅图像受某种噪声污染,5.3.1 常见的噪声及其概率密度函数,怎样判断一幅图像受某种噪声污染 存在物体时,取一块图像块,求它的直方图,求直方图,5.4 线性位移不变的退化过程,设有一个线性成像系统H,当输入函数是f(,)和n(x,y)=0时,其输出函数g(x,y)可表示为:,狄拉克函数,当输入为脉冲(x ,y)时,成像系统的输出便

7、称为脉冲响应,用h (x , y)表示。在图像处理中,它便是对点源的响应。用图表示为,5.4.1 点扩散函数,则当输入的单位脉冲函数延迟了、单位,即当输入为(x , y )时,如果输出为h(x , y ),称此系统为位移不变系统。,5.4 线性位移不变的退化过程,(线性叠加原理),(齐次性; x,y为变量),(移不变性 ,卷积表示),即:线性位移不变系统的输出等于系统的输入与系统脉冲响应(点扩展函数)的卷积。,狄拉克函数性质,5.4 线性位移不变的退化过程,5.4.2 没有噪声的退化过程,5.4.3 估计退化函数,线性位移不变系统的是由它的点扩散函数来决定, 一个冲激可以由一个亮点来模拟,5.

8、4.3 估计退化函数,大气湍流的退化函数,C是与湍流性质有关的常数。,5.4.3 估计退化函数,照相机与景物相对运动的退化函数,5.5 图像复原的方法,按空间域和频率域处理技术:空间域复原方法和频率域复原方法。,对于线性位移不变系统而言,从频率域角度看,它使图像退化,因而反映了成像系统的性能。,5.5 图像复原的方法,5.5.1 逆滤波方法,对退化图像g(x,y)进行二维傅立叶变换,得到G(u,v)。 计算系统冲激响应h(x,y)的二维傅立叶变换,求得H(u,v); 计算F(u,v); 计算F(u,v)的傅立叶反变换,求得f(x,y)。,没有噪声的逆滤波复原方法,5.5.1 逆滤波,放大噪声的

9、原因: H(x,y)的幅值随着u,v离原点的距离的增加而迅速下降,而噪声的幅值变化则较平缓。,则令:,病态性质 (1) H(u,v)= 0 :无法确定F(u,v) (2)H(u,v)0:放大噪声,逆滤波例子,逆滤波例子,这里,H*(u,v)是成像系统传递函数的复共轭;Pn(u,v)是噪声功率谱;Pf(u,v)是输入图像的功率谱。,5.5.2 维纳滤波复原法,维纳滤波器(具体推导见书本),这一方法有如下特点: (1)当H(u,v)0或幅值很小时,分母不为零,不会造成严重的运算误差。(2)在信噪比高的频域,即Pn(u,v)Pf(u,v)(3)在信噪比很小的频域,即|H(u,v)|Pn(u,v)/P

10、f(u,v),,5.5.2 维纳滤波复原法,5.5.2 维纳滤波复原法,对于噪声功率谱Pn(u,v),可在图像上找一块恒定灰度的区域,然后测定区域灰度图像的功率谱作为Pn(u,v)。,k是一个给出的常数,通过调节k 来实现复原。,因此经常采用下面的估计表示式,但是Pf (u,v) 是未知的。,维纳复原,Wiener滤波的过程,计算退化图像g(x,y)的二维Fourier变换G(u,v),计算点扩展函数h(x,y)的二维Fourier变换H(u,v),通过选择k,计算,逆滤波和维纳滤波的比较,(a)运动模糊及均值 为0方差为650的加性 高斯噪声污染的图像 (b) 逆滤波的结果 (c) 维纳滤波的结果 (d)-(f) 噪声幅度的方 差比(a)小1个数量级 (g)-(i) 噪声幅度的方 差比(a)小5个数量级,a=b=0.1 ,T=1,维纳复原例子,沿水平方向匀速运动造成的模糊图像的恢复处理例子。 (a)是模糊图像,(b)是恢复后的图像。,彩色图像的恢复,对于线性移不变系统,最一般的数学表达式为:,本章小结,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报