收藏 分享(赏)

平面向量应用举例.ppt1.ppt

上传人:scg750829 文档编号:9810629 上传时间:2019-09-06 格式:PPT 页数:10 大小:250.50KB
下载 相关 举报
平面向量应用举例.ppt1.ppt_第1页
第1页 / 共10页
平面向量应用举例.ppt1.ppt_第2页
第2页 / 共10页
平面向量应用举例.ppt1.ppt_第3页
第3页 / 共10页
平面向量应用举例.ppt1.ppt_第4页
第4页 / 共10页
平面向量应用举例.ppt1.ppt_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、2.5平面向量应用举例,2.5.1平面几何的向量方法,平面几何中的向量方法,向量概念和运算,都有明确的物理背景和几何背景。当向量与平面坐标系结合以后,向量的运算就可以完全转化为“代数”的计算,这就为我们解决物理问题和几何研究带来极大的方便。由于向量的线性运算和数量积运算具有鲜明的几何背景,平面几何的许多性质,如平移、全等、相似、长度、夹角都可以由向量的线性运算及数量积表示出来,因此,利用向量方法可以解决平面几何中的一些问题。,问题:平行四边形是表示向量加法与减法的几何模型。如图,你能发现平行四边形对角线的长度与两条邻边长度之间的关系吗?,猜想:,1.长方形对角线的长度与两条邻边长度之间有何关系

2、?,2.类比猜想,平行四边形有相似关系吗?,例1、证明平行四边形四边平方和等于两对角线平方和,已知:平行四边形ABCD。 求证:,解:设 ,则,分析:因为平行四边形对边平行且相 等,故设 其它线段对应向 量用它们表示。,你能总结一下利用向量法解决平面几何问题的基本思路吗?,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。,用向量方法解决平面几何问题的“三步曲”:,简述:形到向量 向量的运算 向量和数到形,例2 如图, ABCD中,点E、F分别是A

3、D 、 DC边的中点,BE 、 BF分别与AC交于R 、 T两点,你能发现AR 、 RT 、TC之间的关系吗?,猜想: AR=RT=TC,解:设 则,由于 与 共线,故设,又因为 共线, 所以设,因为 所以,线,,故AT=RT=TC,练习、证明直径所对的圆周角是直角,分析:要证ACB=90,只须证向 量 ,即 。,解:设 则 , 由此可得:,即 ,ACB=90,思考:能否用向量 坐标形式证明?,(1)建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题; (2)通过向量运算,研究几何元素之间的关系,如距离、夹角等问题; (3)把运算结果“翻译”成几何元素。,小结:,用向量方法解决平面几何问题的“三步曲”:,作业:,课本P125 1,2,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报