1、一般说来,ANSYS 的流固耦合主要有 4 种方式:1,sequential这需要用户进行 APDL 编程进行流固耦合sequentia 指的是顺序耦合以采用 MpCCI 为例,你可以利用 ANSYS 和一个第三方 CFD 产品执行流固耦合分析。在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将 ANSYS 和 CFD 程序耦合起来。即使网格上存在差别,MpCCI 也能够实现流固界面的数据转换。ANSYS CD 中包含有 MpCCI库和一个相关实例。关于该方法的详细信息,参见 ANSYS Coupled-Field Analysis Guide 中的 Sequential Coupli
2、n2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是 FSI solver 的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合的例子length=2width=3height=2/prep7et,1,63et,2,30 !选用 FLUID30 单元,用于流固耦合问题r,1,0.01mp,ex,1,2e11mp,nuxy,1,0.3mp,dens,1,7800mp,dens,2,1000 !定义 Acoustics 材料来描述流体材料-水mp,sonc,
3、2,1400mp,mu,0,!block,length,width,heightesize,0.5mshkey,1!type,1mat,1real,1asel,u,loc,y,widthamesh,allalls!type,2mat,2vmesh,allfini/soluantype,2modopt,unsym,10 !非对称模态提取方法处理流固耦合问题eqslv,frontmxpand,10,1nsel,s,loc,x,nsel,a,loc,x,lengthnsel,r,loc,yd,all,ux,uy,uz,nsel,s,loc,y,width,d,all,pres,0allsasel,u
4、,loc,y,width,sfa,all,fsi !定义流固耦合界面allssolvfini/post1set,firstplnsol,u,sum,2,1fini再给大家一个实例!考虑结构在水中的自振频率:例子是一加筋板在水中的模态分析。命令流如下:FINISH/CLEAR/FILENAME,plane/UNITS,SI/TITLE,plane/PREP7!*ELEMENT DEFINE*ET,63,63ET,4,beam4et,30,fluid30!*MATERIAL DEFINE*MP,EX,1,2.10E11MP,DENS,1,7850MP,NUXY,1,0.3mp,dens,30,10
5、25mp,sonc,30,1500mp,mu,30,0.5!*REAL CONSTANT*r,30,1e-06r,50,0.05r,75,0.375e-02,0.78125e-06,0.000016406k,1k,4,1kfill,1,4,2,1kgen,4,1,4,1,1/3,10a,1,2,12,11*do,i,0,2*do,j,0,2*10,10a,1+i+j,2+i+j,12+i+j,11+i+j*enddo*enddo!*fluid element*k,100,-14.5,-14.5k,101,-14.5,15.5k,102,15.5,15.5k,103,15.5,-14.5k,14
6、0,-14.5,-14.5,30k,141,-14.5,15.5,30k,142,15.5,15.5,30k,143,15.5,-14.5,30a,100,101,102,103,4,14,24,34,33,32,31,21,11,1a,1,2,3,4,103,100a,140,141,142,143a,100,101,141,140a,101,102,142,141a,142,143,103,102a,140,143,103,100a,14,24,34,33,32,31,21,11,1,2,3,4asel,u,1,FLST,2,8,5,ORDE,2okok.orgFITEM,2,10okok
7、.orgFITEM,2,-17okok.orgVA,P51Xokok.orgnummrg,allallsMSHKEY,0MSHAPE,0esize,1lsel,s,loc,y,1/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,y,2/3lsel,r,loc,x,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,1/3lsel,r,loc,y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,alllsel,s,loc,x,2/3lsel,r,loc,
8、y,0,1lsel,r,loc,z,0latt,1,75,4lmesh,allasel,s,1,9aatt,1,50,63amesh,allallsMSHAPE,1,3desize,3vsel,s,1type,30 $mat,30 $real,30vmesh,allallsFINISH/solualls!* 求解 *!*ANTYPE,MODALMODOPT,lanb,25,0SOLVEFINISH总是出现 error 说矩阵不对称,不可以用 lanb 计算。总结:流体单元不能用对称的解法应该采用非对称解法。例子是一圆环在水中的模态分析。命令流如下:finish/clear/PREP7!定义单元
9、类型ET,1,PLANE42 ! structural elementET,2,FLUID29 ! acoustic fluid element with ux & uyET,3,129 ! acoustic infinite line elementr,3,0.31242,0,0ET,4,FLUID29,1,0 ! acoustic fluid element without ux & uy!材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0MP,DENS,2,1030MP,SONC,2,1460! 创建四分之一模型CYL4,0,0,0.254,0,0
10、.26035,90CYL4,0,0,0.26035,0,0.31242,90! 选择属性,网格划分ASEL,S,AREA,1AATT,1,1,1,0LESIZE,1,16,1LESIZE,3,16,1LESIZE,2,1,1LESIZE,4,1,1MSHKEY,1MSHAPE,0,2D ! mapped quad meshAMESH,1ASEL,S,AREA,2AATT,2,1,2,0LESIZE,5,16,1LESIZE,7,16,1LESIZE,6,5LESIZE,8,5MSHKEY,0MSHAPE,0,2D ! mapped quad meshAMESH,2! 关于 Y 轴镜像nsym,
11、x,1000,all ! offset node number by 1000esym,1000,all! 关于 y 轴镜像nsym,y,2000,all ! offset node number by 2000esym,2000,allNUMMRG,ALL ! merge all quantitiesesel,s,type,1nsle,sesln,s,0nsle,sesel,invensle,semodif,all,type,4esel,allnsel,all! 指定无限吸收边界csys,1nsel,s,loc,x,0.31242type,3real,3mat,2esurfesel,alln
12、sel,all! 标识流固交接面nsel,s,loc,x,0.26035esel,s,type,2sf,all,fsi,1nsel,allesel,allFINISH/soluantype,modalmodopt,damp,10mxpand,10,yessolvefinish为了便于对比,也对圆环在空气中做了模态分析finish/clear/PREP7!定义单元类型ET,1,PLANE42 ! structural element!材料属性MP,EX,1,2.068e11MP,DENS,1,7929MP,NUXY,1,0! 创建四分之一模型CYL4,0,0,0.254,0,0.26035,90
13、! 选择属性,网格划分ASEL,S,AREA,1AATT,1,1,1,0LESIZE,1,16,1LESIZE,3,16,1LESIZE,2,1,1LESIZE,4,1,1MSHKEY,1MSHAPE,0,2D ! mapped quad meshAMESH,1! 关于 Y 轴镜像nsym,x,1000,all ! offset node number by 1000esym,1000,all! 关于 y 轴镜像nsym,y,2000,all ! offset node number by 2000esym,2000,allNUMMRG,ALL/soluantype,modalmodopt,l
14、anb,10mxpand,10,yessolvefinish在水中的自振频率为SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1-0.19544E-10 1 1 12 0.29640E-03 1 1 13-0.21663E-10 1 2 24-0.29640E-03 1 2 25 0.30870E-03 1 3 36 0.0000 1 3 37-0.30870E-03 1 4 48 0.0000 1 4 49-0.53726E-03 1 5 510 0.57522E-11 1 5 511 0.53726E-03 1 6 612-0.89057E-11 1 6
15、 613 0.98059E-01 1 7 714 35.232 1 7 715 0.98059E-01 1 8 816 -35.232 1 8 817 0.98061E-01 1 9 918 35.233 1 9 919 0.98061E-01 1 10 1020 -35.233 1 10 10在空气中的自振频率为SET TIME/FREQ LOAD STEP SUBSTEP CUMULATIVE1 0.0000 1 1 12 0.0000 1 2 23 0.73609E-03 1 3 34 60.805 1 4 45 60.805 1 5 56 172.97 1 6 67 172.97 1
16、7 78 334.40 1 8 89 334.40 1 9 910 546.59 1 10 10主要有以下疑问:1)考虑流固耦合,做模态分析时流体单元是否只能用 fluid29(2d)和 fluid30(3d),对于fluid129 和 fluid130 在耦合中具体起到什么作用,能不能不设,而用边界约束条件代替?2)流体范围怎样确定,如本例中(CYL4,0,0,0.26035,0,0.31242,90) ,外半径为 0.31242。如果不是环形的,如一块当水板,该怎样考虑?3)如果不考虑流体的压缩性,把声速设的很大,MP,SONC,2,1e20,就可以了。4)从自振频率可以看出,在水中和在空
17、气中,圆环的自振频率差别特别大,且振型也大相径庭,为什么?在水中时,模态提取方法用 damp(为什么不能用 unsym) ,特征值的虚部代表角频率,为什么第一阶为正,第二阶为负,而第三阶和第四阶都为 0,第六阶、八阶、十阶都为负。应该是从小到大才对?5)在空气中时,模态提取方法用 lanb,为什么第一阶第二阶的频率都为 0。请高手指点迷津,急盼中对以上问题的解答:频率为零,一般是发生了刚体位移,估计你是把水抽走,而没有限制圆环。1。圆环在水中振动必然导致波动(其实就是声波) 在水中传播,当声波到达水的另一个界面时就会发生反射(除非水和另一个相邻体的声阻抗是匹配的) 。水和金属中的声速相差不大,
18、即可压缩性相差不大。两种可压缩性相差不大的物质的相互作用对两者影响都很大。圆环在水中振动,水对圆环的反作用是由于反射波引起的,流固耦合中采用 fluid129 和 130 就是最大程度的减弱反射波。2。声波从圆环开始传播,随着传播距离的增加,波阵面不断增大,振幅不断减小。同时由于水的衰减,声波也不断减弱。如果水的空间越大,则反射波返回圆环的路径越长,衰减也就越多,影响也就越小。fluid129 和 130 对反射波的衰减(通过很小的反射实现)有限,因此还需要水要有足够的空间。fluid129 和 130 离结构应该大于 0.2(=c/f,c为水中声速)。以上的做法在误差允许的情况下等效于水在无
19、限大水空间中的情况。如果是挡水板,水就是有限空间了,情况也不一样。3。声速加大情况也不一样,就是不知是不是你所要的情况?4。空气作为介质,由于其声速比金属小很多,可压缩性大很多,影响可以忽略不计。而水的影响就不同了。这可能就是频率和振型不同的原因吧?我试了你的例子,各种提取方法都可以。5。空气的影响忽略不计,因此需要对圆环进行约束。你没有约束,那么就会发生静态位移即频率为零。圆环有两个对称轴,因此会发生频率成对出现的情况。也就是说,两个方向上有同样的振型。接触分析实例-包含初始间隙fini/clear,nostart/prep7et,1,82KEYOPT,1,3,3r,1,0.5mp,ex,1
20、,1e9mp,prxy,1,0.3k,1,0,0k,2,10,0k,3,10,5k,4,6.2,5k,5,7.5,3.4k,6,2.5,3.4k,7,3.8,5k,8,0,5a,1,2,3,4,5,6,7,8LFILLT,6,5,0.18, , LFILLT,5,4,0.18, , FLST,2,3,4 FITEM,2,9 FITEM,2,11 FITEM,2,10 AL,P51XFLST,2,3,4 FITEM,2,13 FITEM,2,14 FITEM,2,12 AL,P51XFLST,2,3,5,ORDE,2 FITEM,2,1 FITEM,2,-3 AADD,P51Xrect,0,10
21、,4.8,5ASBA, 4, 1 gap=0.02k,24,6.2-gap,5k,25,7.5-gap,3.4k,26,2.5+gap,3.4k,27,3.8+gap,5a,24,25,26,27LFILLT,4,3,0.2, , LFILLT,3,2,0.2, , FLST,2,3,4 FITEM,2,7 FITEM,2,10 FITEM,2,8 AL,P51XFLST,2,3,4 FITEM,2,13 FITEM,2,14 FITEM,2,11 AL,P51XFLST,3,2,5,ORDE,2 FITEM,3,3 FITEM,3,-4 ASBA, 1,P51X rect,3.8+gap,6
22、.2-gap,5,10rect,3.8+gap,3.8+gap+8,10,12FLST,2,3,5,ORDE,3 FITEM,2,1 FITEM,2,3 FITEM,2,5 AADD,P51X rect,3.8+gap+8,3.8+gap+8+2,10,12FLST,2,2,5,ORDE,2 FITEM,2,1 FITEM,2,4 AGLUE,P51X CYL4,2.0,1.8,0.6 CYL4,7.0,1.8,0.6FLST,2,3,5,ORDE,3 FITEM,2,2 FITEM,2,4 FITEM,2,-5 AOVLAP,P51Xesize,0.2amesh,allFLST,5,135,
23、2,ORDE,32FITEM,5,485FITEM,5,576FITEM,5,-577FITEM,5,621FITEM,5,-625FITEM,5,707FITEM,5,-711FITEM,5,716FITEM,5,741FITEM,5,-745FITEM,5,750FITEM,5,-751FITEM,5,766FITEM,5,797FITEM,5,-798FITEM,5,854FITEM,5,888FITEM,5,-938FITEM,5,1101FITEM,5,1103FITEM,5,1420FITEM,5,1628FITEM,5,1653FITEM,5,1696FITEM,5,1699FI
24、TEM,5,-1702 FITEM,5,1726FITEM,5,-1728 FITEM,5,1852FITEM,5,-1874 FITEM,5,2044FITEM,5,-2066 CM,_Y,ELEM ESEL, , , ,P51XCM,_Y1,ELEMCMSEL,S,_Y CMDELE,_Y EREF,_Y1, , ,1,0,1,1CMDELE,_Y1 ET,2,TARGE169 ET,3,CONTA172 R,3, , ,R,3,0,0,0.1, 10,0,0R,4, , ,R,4,0,0,0.1, 10,-0.02,0 lsel,s,9lsel,a,5lsel,a,12nsll,s,1t
25、ype,3real,3esurf,allalls,lsel,s,19lsel,a,20nsll,s,1type,3real,4esurf,allalls,lsel,s,7lsel,a,3lsel,a,11nsll,s,1type,2real,3esurf,allalls,lsel,s,25lsel,a,26nsll,s,1type,2real,4esurf,allalls,FLST,2,2,5,ORDE,2 FITEM,2,4 FITEM,2,-5 DA,P51X,ALL,FLST,2,1,4,ORDE,1 FITEM,2,6 SFL,P51X,PRES,500, /soluantype,0n
26、lgeom,onoutres,all,allnsubst,200,200,2neqit,1000solve耦合小程序最近用到耦合,写了一段小程序,奉献出来,与大家共享。如果有很多节点,每两个节点位置相同,如果将这些杂乱无章的节点耦合,是件很麻烦的事,可用这段程序,轻松解决。cpnum=0cmsel,s,n-zhong !需要耦合的节点*GET,n_num,NODE,COUNT, , , , !节点总数*do,i,1,n_numcmsel,s,n-zhong*GET,n_lowest,NODE,NUM,MIN, , , , !号码最小的节点*GET,n_x,NODE,n_lowest,LOC,X
27、 !该节点坐标*GET,n_y,NODE,n_lowest,LOC,Y*GET,n_z,NODE,n_lowest,LOC,ZNSEL,s,LOC,X,n_x-0.3,n_x+0.3 !寻找与该节点位置相同的节点NSEL,R,LOC,Y,n_y-0.3,n_y+0.3NSEL,R,LOC,z,n_z-0.3,n_z+0.3cm,n_cp_cp,node !位置相同的节点形成一个组cmsel,s,n-zhongcmsel,u,n_cp_cpcm,n-zhong,node !取消这些点后剩余的点形成组*GET,n_num_1,NODE,COUNT, , , , !节点总数*if,n_num_1,l
28、t,2,exit !如果节点数小于二则退出cmsel,s,n_cp_cp*GET,n_num,NODE,COUNT, , , ,*if,n_num,gt,1,thenCP,cpnum+1,ux,allCP,cpnum+2,uy,allCP,cpnum+3,uz,allcpnum=cpnum+3*else*endif*enddo该段程序可用CPINTF,UX, 0.001CPINTF,UY, 0.001CPINTF,UZ , 0.001代替*DO,I,2,296,3CP,I,UX,I,I+2*ENDDO*DO,I,2,296,3CP,I,UY,I,I+2*ENDDO*DO,I,2,296,3CP
29、,I,UZ,I,I+2*ENDDODK,1, , , ,0,UX,UY,UZ, , , ,以上几句改为:*DO,I,2,296,3CP,NEXT,ALL,I,I+2*ENDDODK,1, , , ,0,ALL或 CPINTF,ALL,0.001因为你选用的单元有六个自由度,如果只约束三个,程序是不会运行的.另:三次循环语句的 I 相等,约束 UY 时,UX 的耦合就被删掉了,最后只剩 UZ 了这样修改:c*耦合练习/PREP7K,1,0,0K,2,0.1,0L,1,2K,300,0,-10000LGEN,100,1,0.1,2ET,1,BEAM188MP,EX,1,2.1e11MP,PRXY,
30、1,0.3MP,DENS,1,0.783e4SECTYPE, 1, BEAM, T, , 0SECOFFSET, CENTSECDATA,0.06,0.03,0.003,0.006,0,0,0,0,0,0LSEL,ALLLATT,1,1,1,300LESIZE,ALL,1,1,1LMESH,ALLcpintf,allDK,1,ux,0, , ,UY,UZDK,200, , , , ,UY,UZACEL,0,9.8,0,FINISH一个流固耦合的例子这个例子关于装有水的水杯旋转,是轴对称问题,为了简化,所以选择了平面模型。*SET,RAD,0.8*SET,h,1 *SET,g,9.8*SET,O
31、MEGAR,2 *SET,ROU,1000 /PREP7ET,1,FLUID79KEYOPT,1,3,1MP,EX,1,2E9MP,DENS,1,ROU K,1K,2,RADK,3,RAD,H K,4,HK,4,HA,1,2,3,4 LESIZE,ALL,10AMESH,ALL FINISH/SOLDL,2,UXDL,1,UYNSEL,S,LOC,XDSYM,SYMM,XD,ALL,UXD,ALL,UXNSEL,ALLACEL,GOMEGA,OMEGAR SOLVE FINISH/POST1SET,LASTPLNSOL,U,X,0,1*SET,UCENT,UY(22) *SET,UEDGE,U
32、Y(12) *SET,UELEV,UEDGE-UCENTansys 从 9.0 发展到 10.0,一个最大的进步就是流固耦合计算更加规范,这一点已远领先于其他同类软件,实现了单向耦合到即时双向耦合的飞跃,使用户对于解决流固耦合问题又多了一种选择,希望大家对多种方法-物理环境转换,fsi,mfx 等进行讨论,提供一下案例本人抛砖引玉:使用物理环境法进行流固耦合的实例及讲解流道中有一橡胶垫阻碍水的流动,入口速度为 2m/s,其他参数将在命令流中详细给出。求解水通过此流道的压力降,以及稳态条件下橡胶垫的变形。/prep7/sho,gasket,grphshpp,offET,1,141 ! Fluid
33、 - static meshET,2,56, ! Hyperelastic element! Fluid Structure Interaction - Multiphysics! Deformation of a gasket in a flow field.! Element plots are written to the file gasket.grph.! - Water flows in a vertical pipe through a construction! formed by a rubber gasket.! - Determine the equilibrium po
34、sition of the gasket and! the resulting flow field! | |! | |! |-| Boundary of “morphing fluid“! | _|! | |_ gasket! | |! |-| Boundary of “morphing fluid“ (sf)! | |! 1. Build the model of the entire domain:! Fluid region - static mesh! ! Gasket leaves a hole in the center of the duct! Morphing Fluid r
35、egion is a user defined region around! the gasket. The fluid mesh here will deform and be! updated as the gasket deforms.! Parameterize Dimensions in the flow direction!yent = 0.0 ! Y coordinate of the entrance to the pipedyen = 1.0 ! Undeformed geometry flow entrance lengthysf1 = yent+dyen ! Y coor
36、dinate of entrance to the morphing fluid regiondsf1 = 0.5 ! Thickness of upstreamygas = ysf1+dsf1 ! Y coordinate of the bottom of the gasketdg = 0.02 ! Thickness of the gasketdg2=dg/2.ytg = ygas+dg ! Y coordinate of the initial top of the gasketdsf2 = 0.5 ! Thickness of downstream regionysf2 = ytg +
37、 dsf2! Y of Top of the downstream morphing fluids regiondyex = 6.0 ! Exit fluid lengthx = 0. ! Location of the axisymmetric Centerlinedgasr =.20 ! Initial span of gasketpiper = 0.3 ! Radius of the pipexrgap = piper-dgasr! radius of completely unobtructed flow passage! Create geometry!rect,xrgap,pipe
38、r,ygas,ytg ! A1:Gasket (keypoints 1-4)rect,x,piper,ysf1,ysf2 ! A2: Morphing fluid regionrect,x,piper,yent,ysf1 ! A3: Fluid region with static meshrect,x,piper,ysf2,ysf2+dyex ! A4: Fluid region with static meshaovlap,allk,22,xrgap+dg2,ygas+dg2rarc = dg2*1.1larc,1,4,22,rarcal,6,4adelete,7al,6,3,22,7,8
39、,5,21,1!Mesh Division informationngap = 10 ! Number elements across the gapngas = 10 ! Number of elements along the gasketrgas = -2 ! Spacing ratio along gasketnflu = ngap+ngas ! Number of elements across the fluid regionraflu = -3 ! Space fluid elements near the walls and centernenty =8 ! Elements
40、along flow - entranceraent =5 ! Size ratio in the inlet regionnfl1 = 20 ! Elements along flow - first morph.fluid.nthgas = 4 ! Elements in the gasketnfl2 = 3 ! Elements along flow - second morph.fluid.next = 30 ! Elements along flow - exit regionrext = 6 ! Size ratio in flow direction of outletrafls
41、 = 12 ! Initial element spacing ratio - morph.fluidlesize,1,ngas,rgaslesize,3,ngas,rgasnfl11= nfl1*2+9lsel,s,2,4,2 ! (Modify lesize of line 8 if changing gasket mesh)lesize,all,nthgasallslesize,5,nflu,raflulesize,7,nflu,raflulesize,9,nflu,raflulesize,15,nflu,raflulesize,18,nenty,1./raentlesize,17,ne
42、nty,1./raentlesize,21,nfl1,raflslesize,8,nfl11,-1./(rafls+3)lesize,22,nfl1,raflslesize,19,next,rextlesize,20,next,rext! AATT,MAT,REAL,TYPE - Set the attributes for the areasasel,s,1,2aatt,2,2,2 ! Gasket (material 2)asel,s,3cm,area2,areaalist ! List area selected for further morphingasel,a,5,6aatt,1,
43、1,1 ! Fluid area (material 1)allseshape,2asel,u,2,3amesh,alleshape,0asel,s,2,3amesh,all!-! Create element plot and write to the file gasket.grphasel,s,1,3esla,s/Title, Initial mesh for gasket and neighborhoodeplot/ZOOM,1,RECT,0.3,-0.6,0.4,-0.5alls!-! 2. Create Physics Environment for the Fluidet,1,1
44、41 et,2,0 ! Gasket becomes the Null Elementvin=3.5e-1 ! Inlet water velocity (meters/second)! CFD Solution Controlflda,solu,flow,1flda,solu,turb,1flda,iter,exec,400flda,outp,sumf,10! CFD Property Informationflda,prot,dens,constantflda,prot,visc,constantflda,nomi,dens,1000. ! 1000 kg/m3 for density -
45、 waterflda,nomi,visc,4.6E-4 ! 4.6E-4 kg-s/m (viscosity of water)flda,conv,pres,1.E-8 ! Tighten pressure equation convergence! CFD Boundary Conditions (Applied to Solid Model)lsel,s,8,17,9lsel,a,20dl,all,vx,0.,1 ! Centerline symmetrylsel,s,9dl,all,vx,0.,1dl,all,vy,vin,1 ! Inlet Conditionlsel,s,2lsel,
46、a,18,19lsel,a,21,22dl,all,vx,0.,1 ! Outer Walldl,all,vy,0.,1lsel,s,1,3,2lsel,a,6dl,all,vx,0.,1 ! Gasketdl,all,vy,0.,1lsel,s,15dl,15,pres,0.,1 ! Outlet pressure condition! create named component of nodes at the bottom of gasketlsel,s,1nsll,1cm,gasket,nodenlist ! List initial nodal positions of the bo
47、ttom of the gasket/com, + STARTING gasket coordinates -alls/title,Fluid Analysisphysics,write,fluid,fluid! 3. Create Physics Environment for the Structure!physics,clearet,1,0 ! The Null element for the fluid regionet,2,56 ! Gasket element - material 2mp,ex,2,2.82E+6 ! Youngs modulus for rubbermp,nuxy,2,0.49967 ! Poissons ratio for the rubbertb,mooney,2tbdata,1,0.293E+6 ! Mooney-Rivlin Constantstbdata,2,0.177E+6 ! “ “ “lsel,s,2nsll,1d,all,ux,0.d,all,uy,0. ! Fix the end of the gasketalls/title,structural analysisfinish/soluantype,staticnlgeom,on