1、精选高中模拟试卷第 1 页,共 18 页钦北区实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 在ABC 中,角 A,B, C 所对的边分别为 a,b,c,若 (acosB+bcosA)=2csinC,a+b=8,且 ABC的面积的最大值为 4 ,则此时ABC 的形状为( )A等腰三角形 B正三角形 C直角三角形 D钝角三角形2 已知两不共线的向量 , ,若对非零实数 m,n 有 m +n 与 2 共线,则 =( )A2 B2 C D3 已知函数 f(x)是定义在 R 上的奇函数,当 x0 时, .若,f(x-1)f(x),则实数 a 的取值范围
2、为A B C D 4 设 是奇函数,且在 内是增函数,又 ,则 的解集是( )()fx(0,)(3)0f()0xfA B |33或 |3x或C D 或 x或5 下列命题正确的是( )A已知实数 ,则“ ”是“ ”的必要不充分条件,ab2abB“存在 ,使得 ”的否定是“对任意 ,均有 ”0xR201xxR210xC函数 的零点在区间 内13()()f1(,)3D设 是两条直线, 是空间中两个平面,若 , 则,mn,mnn6 已知集合 A=0,m,m 23m+2,且 2A ,则实数 m 为( )A2 B3 C0 或 3 D0,2,3 均可精选高中模拟试卷第 2 页,共 18 页7 函数 f(x
3、)=x 2+ ,则 f(3)=( )A8 B9 C11 D108 已知函数 ,则 ( )1)(2xf dxf0)(A B C D6676565【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.9 已知实数 x,y 满足约束条件 ,若 ykx3 恒成立,则实数 k 的数值范围是( )A ,0 B0, C( ,0 ,+ ) D(, 0,+)10函数 f(x)=3 x+x3 的零点所在的区间是( )A(0,1) B(1,2) C(2.3) D(3,4)11如图,在等腰梯形 ABCD 中,AB=2DC=2 ,DAB=60 ,E 为 AB 的中点,将
4、 ADE 与 BEC 分别沿ED、EC 向上折起,使 A、B 重合于点 P,则 PDCE 三棱锥的外接球的体积为( )A B C D12设等比数列a n的公比 q=2,前 n 项和为 Sn,则 =( )A2 B4 C D二、填空题13在三棱柱 ABCA1B1C1 中,底面为棱长为 1 的正三角形,侧棱 AA1底面 ABC,点 D 在棱 BB1 上,且BD=1,若 AD 与平面 AA1C1C 所成的角为 ,则 sin 的值是 14若 a,b 是函数 f(x)=x 2px+q(p0,q0)的两个不同的零点,且 a,b,2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则 p+q 的值等
5、于 15阅读下图所示的程序框图,运行相应的程序,输出的 的值等于_. n开 始是 n输 出结 束1否5,ST? 4S2T1n精选高中模拟试卷第 3 页,共 18 页16【2017-2018 学年度第一学期如皋市高三年级第一次联考】已知函数 ,其中 为自然对数1exfe的底数,则不等式 的解集为_240fxf17刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下:甲说:“我们四人都没考好”乙说:“我们四人中有人考的好”丙说:“乙和丁至少有一人没考好”丁说:“我没考好”结果,四名学生中有两人说对 了,则这四名学生中的 两人说对了 18一个算
6、法的程序框图如图,若该程序输出的结果为 ,则判断框中的条件 im 中的整数 m 的值是 三、解答题19由四个不同的数字 1,2,4,x 组成无重复数字的三位数(1)若 x=5,其中能被 5 整除的共有多少个?(2)若 x=9,其中能被 3 整除的共有多少个?(3)若 x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是 252,求 x20已知函数 f(x)= (1)求 f(x)的定义域;精选高中模拟试卷第 4 页,共 18 页(2)判断并证明 f(x)的奇偶性;(3)求证:f( )= f(x)21已知函数 f(x)=lnx a( 1 ),a R()求 f(x)的单调区间;()若
7、 f(x)的最小值为 0(i)求实数 a 的值;(ii)已知数列a n满足:a 1=1,a n+1=f(a n)+2 ,记x表示不大于 x 的最大整数,求证:n1 时a n=222设函数 f(x)=kx 2+2x(k 为实常数)为奇函数,函数 g(x)=a f(x) 1(a0 且 a1)()求 k 的值;()求 g(x)在1,2上的最大值;()当 时,g(x)t 22mt+1 对所有的 x1,1及 m1,1恒成立,求实数 t 的取值范围精选高中模拟试卷第 5 页,共 18 页23(本小题满分 13 分)如图,已知椭圆 C: 的离心率为 ,以椭圆 的左顶点 为圆心作圆 :21(0)xyab32C
8、T( ),设圆 与椭圆 交于点 、 _k.Com2()xyr0TCMN(1)求椭圆 的方程;(2)求 的最小值,并求此时圆 的方程;TMN(3)设点 是椭圆 上异于 、 的任意一点,且直线 , 分别与 轴交于点 ( 为坐标PNPxRS、 O原点),求证: 为定值 ORS TSRNMPyxO【命题意图】本题考查椭圆的方程,直线与椭圆的位置关系,几何问题构建代数方法解决等基础知识,意在考查学生转化与化归能力,综合分析问题解决问题的能力,推理能力和运算能力24生产 A,B 两种元件,其质量按测试指标划分为:指标大于或等于 82 为正品,小于 82 为次品现随机抽取这两种元件各 100 件进行检测,检
9、测结果统计如下:测试指标 70,76) 76,82) 82,88) 88,94) 94,100元件 A 8 12 40 32 8精选高中模拟试卷第 6 页,共 18 页元件 B 7 18 40 29 6()试分别估计元件 A,元件 B 为正品的概率;()生产一件元件 A,若是正品可盈利 40 元,若是次品则亏损 5 元;生产一件元件 B,若是正品可盈利50 元,若是次品则亏损 10 元在()的前提下,()记 X 为生产 1 件元件 A 和 1 件元件 B 所得的总利润,求随机变量 X 的分布列和数学期望;()求生产 5 件元件 B 所获得的利润不少于 140 元的概率精选高中模拟试卷第 7 页
10、,共 18 页钦北区实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解: (acosB+bcosA)=2csinC, (sinAcosB+sinBcosA) =2sin2C, sinC=2sin2C,且 sinC0,sinC= ,a+b=8,可得:82 ,解得: ab16,(当且仅当 a=b=4 成立)ABC 的面积的最大值 SABC= absinC =4 ,a=b=4,则此时ABC 的形状为等腰三角形故选:A2 【答案】C【解析】解:两不共线的向量 , ,若对非零实数 m, n 有 m +n 与 2 共线,存在非 0 实数 k 使得
11、m +n =k( 2 )=k 2k ,或 k(m +n )= 2 , ,或 ,则 = 故选:C【点评】本题考查了向量共线定理、向量共面的基本定理,考查了推理能力与计算能力,属于中档题3 【答案】 B【解析】当 x0 时,f(x)= ,由 f(x )=x3a 2,x 2a 2,得 f(x )a 2;当 a2x2a 2 时,f (x)=a 2;由 f(x )=x ,0xa 2,得 f(x )a 2。精选高中模拟试卷第 8 页,共 18 页当 x0 时, 。函数 f(x)为奇函数,当 x0 时, 。对 xR,都有 f(x1 )f(x),2a2(4a 2)1,解得: 。故实数 a 的取值范围是 。4
12、【答案】B【解析】试题分析:因为 为奇函数且 ,所以 ,又因为 在区间 上为增函数且fx30f30ffx0,,所以当 时, ,当 时, ,再根据奇函数图象关于原点对30f0,x,称可知:当 时, ,当 时, ,所以满足 的 的取值范3fffx围是: 或 。故选 B。,x,x考点:1.函数的奇偶性;2.函数的单调性。5 【答案】C【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有定义法:先分清条件和结论(分清哪个是条件 ,哪个是结论),然后找推导关系(判断 的真假),,p
13、q最后下结论(根据推导关系及定义下结论). 等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断.6 【答案】B【解析】解:A=0,m,m 23m+2,且 2A,m=2 或 m23m+2=2,解得 m=2 或 m=0 或 m=3当 m=0 时,集合 A=0,0,2 不成立精选高中模拟试卷第 9 页,共 18 页当 m=2 时,集合 A=0,0,2 不成立当 m=3 时,集合 A=0,3,2 成立故 m=3故选:B【点评】本题主要考查集合元素和集合之间的关系的应用,注意求解之后要进行验证7 【答案】C【解析】解:函数 = , f(3)=3 2+2=11故选 C8 【答案】B9 【
14、答案】A【解析】解:由约束条件 作可行域如图,联立 ,解得 B(3,3)联立 ,解得 A( )由题意得: ,解得: 精选高中模拟试卷第 10 页,共 18 页实数 k 的数值范围是 故选:A【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题10【答案】A【解析】解:f(0)=20,f (1)=10,由零点存在性定理可知函数 f(x)=3 x+x3 的零点所在的区间是( 0,1)故选 A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题11【答案】C【解析】解:易证所得三棱锥为正四面体,它的棱长为 1,故
15、外接球半径为 ,外接球的体积为 ,故选 C【点评】本题考查球的内接多面体,球的体积等知识,考查逻辑思维能力,是中档题12【答案】C【解析】解:由于 q=2, ;故选:C二、填空题13【答案】 【解析】解:如图所示,分别取 AC,A 1C1 的中点 O,O 1,连接 OO1,取 OE=1,连接 DE,B 1O1,AEBOAC ,侧棱 AA1底面 ABC,三棱柱 ABCA1B1C1 是直棱柱精选高中模拟试卷第 11 页,共 18 页由直棱柱的性质可得:BO侧面 ACC1A1四边形 BODE 是矩形DE侧面 ACC1A1DAE 是 AD 与平面 AA1C1C 所成的角,为 ,DE= =OBAD= =
16、 在 Rt ADE 中,sin= = 故答案为: 【点评】本题考查了直棱柱的性质、空间角、空间位置关系、等边三角形的性质,考查了推理能力与计算能力,属于中档题14【答案】 9 【解析】解:由题意可得:a+b=p,ab=q,p 0,q0,可得 a0,b0,又 a,b,2 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得 或 解得: ;解得: p=a+b=5,q=14=4 ,精选高中模拟试卷第 12 页,共 18 页则 p+q=9故答案为:915【答案】 6【解析】解析:本题考查程序框图中的循环结构第 1 次运行后, ;第 2 次运行后,9,2,STnST;第 3 次运行后, ;第
17、4 次运行后,13,4,STnST7,8,STn;第 5 次运行后, ,此时跳出循环,输出结果2 2536程序结束616【答案】 2,【解析】 , ,即函数 为奇函数,1e,xfR1xxfeefxfx又 恒成立,故函数 在 上单调递增,不等式 可转化为0x R240,即 ,解得: ,即不等式 的解集24ff2432ff为 ,故答案为 .3, 3,17【答案】乙 ,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。18【答案】 6 【解析】解:第一次循环:S=0+ = ,i=1+1=2 ;第二次
18、循环:S= + = , i=2+1=3;第三次循环:S= + = , i=3+1=4;第四次循环:S= + = , i=4+1=5;第五次循环:S= + = , i=5+1=6;输出 S,不满足判断框中的条件;判断框中的条件为 i6?故答案为:6【点评】本题考查程序框图,尤其考查循环结构对循环体每次循环需要进行分析并找出内在规律本题属于基础题精选高中模拟试卷第 13 页,共 18 页三、解答题19【答案】 【解析】【专题】计算题;排列组合【分析】(1)若 x=5,根据题意,要求的三位数能被 5 整除,则 5 必须在末尾,在 1、2、4 三个数字中任选2 个,放在前 2 位,由排列数公式计算可得
19、答案;(2)若 x=9,根据题意,要求的三位数能被 3 整除,则这三个数字为 1、2、9 或 2、4、9,分“取出的三个数字为 1、2、9”与“ 取出的三个数字为 2、4、9” 两种情况讨论,由分类计数原理计算可得答案;(3)若 x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为 0 或 2 或 4,分“末位是 0”与“末位是 2 或 4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得 x=0 时不能满足题意,进而讨论 x0 时,先求出 4 个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了 18 次,则有 252=18(1+2+4+x ),解可得 x 的值【解
20、答】解:(1)若 x=5,则四个数字为 1,2,4,5;又由要求的三位数能被 5 整除,则 5 必须在末尾,在 1、2、4 三个数字中任选 2 个,放在前 2 位,有 A32=6 种情况,即能被 5 整除的三位数共有 6 个;(2)若 x=9,则四个数字为 1,2,4,9;又由要求的三位数能被 3 整除,则这三个数字为 1、2、9 或 2、4、9,取出的三个数字为 1、2、9 时,有 A33=6 种情况,取出的三个数字为 2、4、9 时,有 A33=6 种情况,则此时一共有 6+6=12 个能被 3 整除的三位数;(3)若 x=0,则四个数字为 1,2,4,0;又由要求的三位数是偶数,则这个三
21、位数的末位数字为 0 或 2 或 4,当末位是 0 时,在 1、2、4 三个数字中任选 2 个,放在前 2 位,有 A32=6 种情况,当末位是 2 或 4 时,有 A21A21A21=8 种情况,此时三位偶数一共有 6+8=14 个,(4)若 x=0,可以组成 C31C31C21=332=18 个三位数,即 1、2、4、0 四个数字最多出现 18 次,则所有这些三位数的各位数字之和最大为(1+2+4)18=126 ,不合题意,故 x=0 不成立;当 x0 时,可以组成无重复三位数共有 C41C31C21=432=24 种,共用了 243=72 个数字,则每个数字用了 =18 次,精选高中模拟
22、试卷第 14 页,共 18 页则有 252=18(1+2+4+x),解可得 x=7【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分 x 为 0 与否两种情况讨论20【答案】 【解析】解:(1)1+x 21 恒成立,f (x)的定义域为(,+);(2)f (x)= = =f(x),f( x)为偶函数;(3)f (x)= f( )= = = =f(x)即 f( )=f (x)成立【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础21【答案】 【解析】解:()函数 f( x)的定义域为(0,+ ),且 f(x)= = 当 a0 时,f (x)0,所以
23、f(x)在区间(0,+)内单调递增;当 a0 时,由 f(x)0,解得 xa;由 f(x)0,解得 0xa所以 f(x)的单调递增区间为( a,+),单调递减区间为(0,a)综上述:a0 时,f(x)的单调递增区间是(0,+);a0 时,f(x)的单调递减区间是(0,a),单调递增区间是( a,+)()()由()知,当 a0 时,f(x)无最小值,不合题意;当 a0 时,f(x) min=f(a)=1a+lna=0 ,令 g(x)=1 x+lnx(x0),则 g(x)= 1+ = ,由 g(x)0,解得 0x1;由 g(x)0,解得 x1所以 g(x)的单调递增区间为(0,1),单调递减区间为
24、(1,+)故g(x) max=g(1)=0,即当且仅当 x=1 时,g(x)=0因此,a=1精选高中模拟试卷第 15 页,共 18 页()因为 f(x)=lnx 1+ ,所以 an+1=f(a n)+2=1+ +lnan由 a1=1 得 a2=2 于是 a3= +ln2因为 ln2 1,所以 2a 3 猜想当 n3,n N 时,2a n 下面用数学归纳法进行证明当 n=3 时, a3= +ln2,故 2a 3 成立假设当 n=k(k 3,kN)时,不等式 2a k 成立则当 n=k+1 时,a k+1=1+ +lnak,由()知函数 h(x)=f(x)+2=1+ +lnx 在区间(2, )单调
25、递增,所以 h(2)h(a k)h( ),又因为 h(2)=1+ +ln22,h( )=1+ +ln 1+ +1 故 2a k+1 成立,即当 n=k+1 时,不等式成立根据可知,当 n3,nN 时,不等式 2a n 成立综上可得,n1 时a n=2【点评】本题主要考查函数的导数、导数的应用等基础知识,考查推理论证能力、运算求解能力、创新意识等,考查函数与方程思想、化归与转化思想、分类与整合思想、有限与无限思想等,属难题22【答案】 【解析】解:()由 f(x)=f(x)得 kx22x=kx22x,k=0()g(x)=a f(x) 1=a2x1=(a 2) x1当 a21,即 a1 时,g(x
26、)=(a 2) x1 在1,2上为增函数, g(x)最大值为 g(2)=a 41当 a21,即 0a1 时,g(x)=(a 2) x 在1,2上为减函数,g(x)最大值为 精选高中模拟试卷第 16 页,共 18 页()由()得 g(x)在 x1,1上的最大值为 ,1t 22mt+1 即 t22mt0 在1,1 上恒成立令 h(m)=2mt+t 2,即所以 t(, 202,+)【点评】本题考查函数的奇偶性,考查函数的最值,考查恒成立问题,考查分类讨论的数学思想,考查学生分析解决问题的能力,属于中档题23【答案】【解析】(1)依题意,得 2a, 3ce,1,32cbc;故椭圆 C的方程为 4xy
27、(3 分)精选高中模拟试卷第 17 页,共 18 页(3)设 由题意知: , .),(0yxP01x01y直线 的方程为M),(0y令 得 ,同理: ,y10xR 10yxxS. (10 分)21021yS又点 在椭圆上,故P,,)(4),(42121020xx,4)(42102100yySR,RSRSOxx即 为定值. (13 分)24【答案】 【解析】解:()元件 A 为正品的概率约为 精选高中模拟试卷第 18 页,共 18 页元件 B 为正品的概率约为 ()()生产 1 件元件 A 和 1 件元件 B 可以分为以下四种情况:两件正品, A 次 B 正,A 正 B 次,A次 B 次随机变量 X 的所有取值为 90,45,30,15 P( X=90)= = ;P(X=45)= = ;P(X=30)= = ;P(X=15)= = 随机变量 X 的分布列为:EX= ()设生产的 5 件元件 B 中正品有 n 件,则次品有 5n 件依题意得 50n10(5 n) 140,解得 所以 n=4 或 n=5 设“生产 5 件元件 B 所获得的利润不少于 140 元”为事件 A,则 P(A)= =