1、精选高中模拟试卷第 1 页,共 17 页越秀区实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 常用以下方法求函数 y=f(x) g(x) 的导数:先两边同取以 e 为底的对数(e2.71828,为自然对数的底数)得 lny=g(x)lnf(x),再两边同时求导,得 y=g(x)lnf(x)+g(x)lnf(x),即 y=f(x)g(x) g(x)lnf (x)+g(x)lnf(x) 运用此方法可以求函数 h(x)=x x(x0)的导函数据此可以判断下列各函数值中最小的是( )Ah( ) Bh( ) Ch( ) Dh( )2 已知点 M 的球坐标
2、为(1, , ),则它的直角坐标为( )A(1, , ) B( , , ) C( , , ) D( , , )3 在区间 上恒正,则的取值范围为( )2fxax0,1A B C D以上都不对02a02a4 已知函数 f(x)=3cos( 2x ),则下列结论正确的是( )A导函数为B函数 f(x)的图象关于直线 对称C函数 f(x)在区间( , )上是增函数D函数 f(x)的图象可由函数 y=3co s2x 的图象向右平移 个单位长度得到5 设 a0,b0,若 是 5a与 5b的等比中项,则 + 的最小值为( )A8 B4 C1 D6 若变量 xy, 满足约束条件2041xy,则目标函数 32
3、zxy的最小值为( )A-5 B-4 C.-2 D37 已知数列a n满足 log3an+1=log3an+1(nN *),且 a2+a4+a6=9,则 log (a 5+a7+a9)的值是( )精选高中模拟试卷第 2 页,共 17 页A B5 C5 D8 集合 , , ,则 ,|42,MxkZ|2,NxkZ|42,PxkZM, 的关系( )NPA B C DPMNPN9 “a0”是“方程 y2=ax 表示的曲线为抛物线 ”的( )条件A充分不必要 B必要不充分C充要 D既不充分也不必要10已知数列 的首项为 ,且满足 ,则此数列的第 4 项是( )n1a12nnaA1 B C. D35811
4、函数 f(x)=( ) x29 的单调递减区间为( )A(,0) B(0,+) C( 9,+) D(,9)12已知函数 ,函数 满足以下三点条件:定义域为 ;对任意 ,有)0(|log)(2xf )(xgRRx;当 时, .则函数 在区间 上零1()2gx1,21)(xgfy4,点的个数为( )A7 B6 C5 D4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大.二、填空题13设 为锐角,若 sin( )= ,则 cos2= 14已知集合 |03,AxR , |12,BxxR ,则 AB 15台风“海马” 以 25km/h 的速
5、度向正北方向移动,观测站位于海上的 A 点,早上 9 点观测,台风中心位于其东南方向的 B 点;早上 10 点观测,台风中心位于其南偏东 75方向上的 C 点,这时观测站与台风中心的距离 AC 等于 km16在棱长为 1 的正方体 ABCDA1B1C1D1中,M 是 A1D1的中点,点 P 在侧面 BCC1B1上运动现有下列命题:若点 P 总保持 PABD1,则动点 P 的轨迹所在曲线是直线;精选高中模拟试卷第 3 页,共 17 页若点 P 到点 A 的距离为 ,则动点 P 的轨迹所在曲线是圆;若 P 满足MAP=MAC 1,则动点 P 的轨迹所在曲线是椭圆;若 P 到直线 BC 与直线 C1
6、D1的距离比为 1:2,则动点 P 的轨迹所在曲线是双曲线;若 P 到直线 AD 与直线 CC1的距离相等,则动点 P 的轨迹所在曲线是抛物丝其中真命题是 (写出所有真命题的序号)17已知函数 f(x)=x 3ax2+3x 在 x1 ,+)上是增函数,求实数 a 的取值范围 18 的展开式中 的系数为 (用数字作答)三、解答题19设函数 f(x)=mx 2mx1(1)若对一切实数 x,f(x) 0 恒成立,求 m 的取值范围;(2)对于 x1,3,f (x)m+5 恒成立,求 m 的取值范围20如图所示,一动圆与圆 x2+y2+6x+5=0 外切,同时与圆 x2+y26x91=0 内切,求动圆
7、圆心 M 的轨迹方程,并说明它是什么样的曲线精选高中模拟试卷第 4 页,共 17 页21(理)设函数 f(x)=(x+1)ln(x+1)(1)求 f(x)的单调区间;(2)若对所有的 x0,均有 f(x)ax 成立,求实数 a 的取值范围22(本小题满分 12 分)中央电视台电视公开课开讲了需要现场观众,先邀请甲、乙、丙、丁四所大学的 40 名学生参加,各大学邀请的学生如下表所示:大学 甲 乙 丙 丁人数 8 12 8 12从这 40 名学生中按分层抽样的方式抽取 10 名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出 2 名学生发言,求
8、这 2 名学生来自同一所大学的概率.精选高中模拟试卷第 5 页,共 17 页23 设函数 , ()xfe()lngx()证明: ;2()若对所有的 ,都有 ,求实数 的取值范围0()fxa24如图,已知椭圆 C: +y2=1,点 B 坐标为(0, 1),过点 B 的直线与椭圆 C 另外一个交点为 A,且线段 AB 的中点 E 在直线 y=x 上()求直线 AB 的方程()若点 P 为椭圆 C 上异于 A,B 的任意一点,直线 AP,BP 分别交直线 y=x 于点 M,N,证明:OMON 为定值精选高中模拟试卷第 6 页,共 17 页精选高中模拟试卷第 7 页,共 17 页越秀区实验中学 201
9、8-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:(h(x)=x xxlnx+x(lnx )=xx(lnx+1),令 h(x)0,解得:x ,令 h(x)0,解得:0x ,h(x)在(0, )递减,在( ,+)递增,h( )最小,故选:B【点评】本题考查函数的导数的应用,极值的求法,基本知识的考查2 【答案】B【解析】解:设点 M 的直角坐标为(x,y,z),点 M 的球坐标为(1, , ),x=sin cos = ,y=sin sin = ,z=cos =M 的直角坐标为( , , )故选:B【点评】假设 P(x,y,z)为空间内一点,则点 P 也
10、可用这样三个有次序的数 r, 来确定,其中 r 为原点 O 与点 P 间的距离, 为有向线段 OP 与 z 轴正向的夹角, 为从正 z 轴来看自 x 轴按逆时针方向转到 OM所转过的角,这里 M 为点 P 在 xOy 面上的投影这样的三个数 r, 叫做点 P 的球面坐标,显然,这里r, 的变化范围为 r0,+),0 ,2, 0,3 【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数 在区间 上恒正,则2fxax0,1,即 ,解得 ,故选 C.(0)1f20a02a考点:函数的单调性的应用.精选高中模拟试卷第 8 页,共 17 页4 【答案】B【解析】解:对于 A,函数 f(x
11、)=3sin (2x )2=6sin(2x ),A 错误;对于 B,当 x= 时,f ( )=3cos(2 ) =3 取得最小值,所以函数 f(x)的图象关于直线 对称,B 正确;对于 C,当 x( , )时,2x ( , ),函数 f(x)=3cos(2x )不是单调函数,C 错误;对于 D,函数 y=3co s2x 的图象向右平移 个单位长度,得到函数 y=3co s2(x )=3co s(2x )的图象,这不是函数 f(x)的图象,D 错误故选:B【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目5 【答案】B【解析】解: 是 5a与 5b的等比中项,5a5b=( ) 2=5,
12、即 5a+b=5,则 a+b=1,则 + =( + )(a+b) =1+1+ + 2+2 =2+2=4,当且仅当 = ,即 a=b= 时,取等号,即 + 的最小值为 4,故选:B【点评】本题主要考查等比数列性质的应用,以及利用基本不等式求最值问题,注意 1 的代换6 【答案】B【解析】精选高中模拟试卷第 9 页,共 17 页试题分析:根据不等式组作出可行域如图所示阴影部分,目标函数可转化直线系 31y2xz,直线系在可行域内的两个临界点分别为 )2,0(A和 ),1(C,当直线过 A点时, 34zx,当直线过 C点时, 3213zxy,即的取值范围为 3,4,所以 Z的最小值为 4.故本题正确
13、答案为 B.考点:线性规划约束条件中关于最值的计算.7 【答案】B【解析】解:数列a n满足 log3an+1=log3an+1(nN *),an+1=3an0,数列 an是等比数列,公比 q=3又 a2+a4+a6=9, =a5+a7+a9=339=35,则 log (a 5+a7+a9)= =5故选;B8 【答案】A【解析】试题分析:通过列举可知 ,所以 .2,6,0,24,6MPN MPN考点:两个集合相等、子集19 【答案】A【解析】解:若方程 y2=ax 表示的曲线为抛物线,则 a0精选高中模拟试卷第 10 页,共 17 页“a0”是“ 方程 y2=ax 表示的曲线为抛物线 ”的充分
14、不必要条件故选 A【点评】本题主要考查充分条件和必要条件的判断,利用抛物线的定义是解决本题的关键,比较基础10【答案】B【解析】11【答案】B【解析】解:原函数是由 t=x2与 y=( ) t9 复合而成,t=x2在( , 0)上是减函数,在(0,+)为增函数;又 y=( ) t9 其定义域上为减函数,f( x) =( ) x29 在( ,0)上是增函数,在(0,+)为减函数,函数 ff(x)= ( ) x29 的单调递减区间是(0,+)故选:B【点评】本题考查复合函数的单调性,讨论内层函数和外层函数的单调性,根据“同増异减” 再来判断是关键12【答案】D精选高中模拟试卷第 11 页,共 17
15、 页第卷(共 100 分)Com二、填空题13【答案】 【解析】解: 为锐角,若 sin( )= ,cos( )= ,sin = sin( )+cos( )= ,cos2=1 2sin2= 故答案为: 【点评】本题主要考查了同角三角函数关系式,二倍角的余弦函数公式的应用,属于基础题14【答案】11,3【解析】试题分析:AB |03,|12,xRxxR 11,3考点:集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、精选高中模拟试卷第 12 页,共 17 页点集还是其他的集合2.求集合的交、并、补时,一般先化简集合,再由交、并、补
16、的定义求解3.在进行集合的运算时要尽可能地借助 Venn 图和数轴使抽象问题直观化一般地,集合元素离散时用 Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍15【答案】 25 【解析】解:由题意,ABC=135,A=7545=30,BC=25km,由正弦定理可得 AC= =25 km,故答案为:25 【点评】本题考查三角形的实际应用,转化思想的应用,利用正弦定理解答本题是关键16【答案】 【解析】解:对于,BD 1面 AB1C,动点 P 的轨迹所在曲线是直线 B1C,正确;对于,满足到点 A 的距离为 的点集是球,点 P 应为平面截球体所得截痕,即轨迹所在曲线为圆,正确
17、;对于,满足条件MAP=MAC 1 的点 P 应为以 AM 为轴,以 AC1 为母线的圆锥,平面 BB1C1C 是一个与轴 AM 平行的平面,又点 P 在 BB1C1C 所在的平面上,故 P 点轨迹所在曲线是双曲线一支,错误;对于,P 到直线 C1D1 的距离,即到点 C1的距离与到直线 BC 的距离比为 2:1,动点 P 的轨迹所在曲线是以 C1 为焦点,以直线 BC 为准线的双曲线,正确;对于,如图建立空间直角坐标系,作 PEBC,EF AD,PGCC 1,连接 PF,设点 P 坐标为(x,y,0),由|PF|=|PG|,得 ,即 x2y2=1,P 点轨迹所在曲线是双曲线,错误故答案为:精
18、选高中模拟试卷第 13 页,共 17 页【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题17【答案】 (,3 【解析】解:f(x)=3x 22ax+3,f( x)在 1, +)上是增函数,f(x)在1,+ )上恒有 f(x)0,即 3x22ax+30 在1,+)上恒成立则必有 1 且 f(1)= 2a+60,a3;实数 a 的取值范围是(,318【答案】20【解析】【知识点】二项式定理与性质【试题解析】通项公式为: 令 12-3r=3,r=3所以系数为:故答案为:三、解答题19【答案】 【解析】解:(1)当 m=0 时, f(x
19、)=10 恒成立,当 m0 时,若 f(x)0 恒成立,则解得4 m0综上所述 m 的取值范围为( 4,0 (2)要 x1,3,f (x)m+5 恒成立,即 恒成立令 当 m0 时,g(x)是增函数,精选高中模拟试卷第 14 页,共 17 页所以 g(x) max=g(3)=7m6 0,解得 所以当 m=0 时,60 恒成立当 m0 时,g(x)是减函数所以 g(x) max=g(1)=m 6 0,解得 m6所以 m0综上所述, 【点评】本题考查的知识点是函数恒成立问题,函数的最值,其中将恒成立问题转化为最值问题是解答此类问题的关键20【答案】 【解析】解:(方法一)设动圆圆心为 M(x,y)
20、,半径为 R,设已知圆的圆心分别为 O1、O 2,将圆的方程分别配方得:(x+3) 2+y2=4,(x 3) 2+y2=100,当动圆与圆 O1相外切时,有 |O1M|=R+2当动圆与圆 O2相内切时,有 |O2M|=10R将两式相加,得|O 1M|+|O2M|=12|O 1O2|,动圆圆心 M(x,y)到点 O1( 3,0)和 O2(3,0)的距离和是常数 12,所以点 M 的轨迹是焦点为点 O1( 3,0)、O 2(3,0),长轴长等于 12 的椭圆2c=6,2a=12,c=3,a=6b 2=369=27圆心轨迹方程为 ,轨迹为椭圆(方法二):由方法一可得方程 ,移项再两边分别平方得:2两
21、边再平方得:3x 2+4y2108=0,整理得所以圆心轨迹方程为 ,轨迹为椭圆精选高中模拟试卷第 15 页,共 17 页【点评】本题以两圆的位置关系为载体,考查椭圆的定义,考查轨迹方程,确定轨迹是椭圆是关键21【答案】 【解析】解:(1)由 f(x)=ln(x+1)+10 得 ,f(x)的增区间为 ,减区间为(2)令 g(x)=(x+1 )ln(x+1)ax“不等式 f(x)ax 在 x0 时恒成立”“ g(x) g(0)在 x0 时恒成立”g (x) =ln(x+1)+1a=0x=e a11当 x(1,e a11)时,g(x)0,g(x)为减函数当 x(e a11, +)时,g(x)0,g(
22、x)为增函数“g( x) 0 在 x0 时恒成立”“e a110”,即 ea1e0,即 a10,即 a1故 a 的取值范围是(,122【答案】(1)甲,乙,丙,丁;(2) .25P【解析】试题分析:(1)从这 名学生中按照分层抽样的方式抽取 名学生,则各大学人数分别为甲,乙,丙,丁;4010(2)利用列举出从参加问卷调查的 名学生中随机抽取两名学生的方法共有 种,这来自同一所大学的取15法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这 40 名学生中按照分层抽样的方式抽取 10 名学生,则各大学人数分别为甲 2,乙 3,丙2,丁 3. (2)设乙中 3 人为 ,丁中 3 人
23、为 ,从这 6 名学生中随机选出 2 名学生发言的结果为123,a123,b, , , , , , , , , ,1,a1,b12,a2,12,ba,32,ba31,, , , , ,共 15 种, 32b3,3,这 2 名同学来自同一所大学的结果共 6 种,所以所求概率为 .5P考点:1、分层抽样方法的应用;2、古典概型概率公式.23【答案】 精选高中模拟试卷第 16 页,共 17 页【解析】()令 ,ee()2ln2Fxgx21e()xFx由 在 递减,在 递增,()0ex(0, 即 成立 5 分min()l )F()gx() 记 , 在 恒成立,()xhfxaea0h,), , ()ex
24、a0h 在 递增, 又 , 7 分0,)02 当 时, 成立, 即 在 递增,2()x,)则 ,即 成立; 9 分(hxfa 当 时, 在 递增,且 ,a),min20h 必存在 使得 则 时, ,0,t(0ht(,)xt()t即 时, 与 在 恒成立矛盾,故 舍去()xt2a综上,实数 的取值范围是 12 分2a24【答案】 【解析】()解:设点 E(t ,t),B(0, 1),A(2t,2t+1),点 A 在椭圆 C 上, ,整理得:6t 2+4t=0,解得 t= 或 t=0(舍去),E( , ),A( , ),直线 AB 的方程为:x+2y+2=0;()证明:设 P(x 0,y 0),则 ,直线 AP 方程为:y+ = (x+ ),联立直线 AP 与直线 y=x 的方程,解得:x M= ,直线 BP 的方程为:y+1= ,精选高中模拟试卷第 17 页,共 17 页联立直线 BP 与直线 y=x 的方程,解得:x N= ,OM ON= |xM| |xN|=2| | |= | |= | |= | |= 【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题