1、精选高中模拟试卷第 1 页,共 16 页瑞昌市外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 某几何体的三视图如图所示,该几何体的体积是( )A B C D2 设奇函数 f(x)在(0, +)上为增函数,且 f(1)=0 ,则不等式 0 的解集为( )A(1 ,0)(1,+ ) B( ,1)(0,1) C( ,1)(1,+)D( 1,0) (0,1)3 已知正方体的不在同一表面的两个顶点 A(1,2,1),B (3,2,3),则正方体的棱长等于( )A4 B2 C D24 5 名运动员争夺 3 项比赛冠军(每项比赛无并列冠军),获得冠军的可能
2、种数为( )A3 5 B C D5 35 已知全集 I=1,2,3,4 ,5,6 ,A=1,2,3,4,B=3,4,5,6,那么 I(AB)等于( )A3 ,4 B1,2,5,6 C1,2,3,4,5,6 D6 已知定义在实数集 R 上的函数 f(x)满足 f(1)=3,且 f(x)的导数 f(x)在 R 上恒有 f(x)2(xR),则不等式 f(x )2x+1 的解集为( )A(1,+) B( ,1) C( 1,1) D(,1)(1,+)7 命题“xR,使得 x21 ”的否定是( )AxR ,都有 x21 Bx R,使得 x21精选高中模拟试卷第 2 页,共 16 页CxR,使得 x21 D
3、xR ,都有 x1 或 x18 已知函数 y=f(x)对任意实数 x 都有 f(1+x )=f(1x),且函数 f(x)在1,+)上为单调函数若数列a n是公差不为 0 的等差数列,且 f(a 6)=f(a 23),则a n的前 28 项之和 S28=( )A7 B14 C28 D569 设曲线 在点 处的切线的斜率为 ,则函数 的部分图象2()1f(,)f ()g()cosygx可以为( )A B C. D10记集合 T=0,1,2,3,4,5,6,7,8,9,M= ,将 M 中的元素按从大到小排列,则第 2013 个数是( )A BC D11下列哪组中的两个函数是相等函数( )A B44=
4、fxx, g24=,2xfgxC D1,0, 3,12如果 3 个正整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组勾股数从 1,2,3,4,5中任取 3 个不同的数,则这 3 个数构成一组勾股数的概率为( )A B C D二、填空题13当 时,4 xlog ax,则 a 的取值范围 14已知 ,则函数 的解析式为_.2181ffx精选高中模拟试卷第 3 页,共 16 页15如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 16在各项为正数的等比数列a n中,若 a6=a5+2a4,则公比 q= 17已知点 A 的坐标为( 1,0),点 B 是圆
5、心为 C 的圆(x1) 2+y2=16 上一动点,线段 AB 的垂直平分线交 BC 与点 M,则动点 M 的轨迹方程为 18某工厂的某种型号的机器的使用年限 x 和所支出的维修费用 y(万元)的统计资料如表:x 6 8 10 12y 2 3 5 6根据上表数据可得 y 与 x 之间的线性回归方程 =0.7x+ ,据此模型估计,该机器使用年限为 14 年时的维修费用约为 万元三、解答题19某滨海旅游公司今年年初用 49 万元购进一艘游艇,并立即投入使用,预计每年的收入为 25 万元,此外每年都要花费一定的维护费用,计划第一年维护费用 4 万元,从第二年起,每年的维修费用比上一年多 2 万元,设使
6、用 x 年后游艇的盈利为 y 万元(1)写出 y 与 x 之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?20已知函数 f(x)=lnx axb(a,b R)()若函数 f(x)在 x=1 处取得极值 1,求 a,b 的值()讨论函数 f(x)在区间( 1,+ )上的单调性()对于函数 f(x)图象上任意两点 A(x 1,y 1),B(x 2,y 2)(x 1x 2),不等式 f(x 0)k 恒成立,其中 k 为直线 AB 的斜率,x 0=x1+(1)x 2,01,求 的取值范围精选高中模拟试卷第 4 页,共 16 页21(本小题满分 13 分)设 ,数列 满足: , 1()f
7、xna121(),nnafN()若 为方程 的两个不相等的实根,证明:数列 为等比数列;12,()fx 12na()证明:存在实数 ,使得对 , mN21nm)22设锐角三角形 的内角 所对的边分别为 ABC, ,abc2sinA(1)求角 的大小;(2)若 , ,求3a5c精选高中模拟试卷第 5 页,共 16 页23已知数列a n的前 n 项和为 Sn,且 Sn= an ,数列b n中,b 1=1,点 P(b n,b n+1)在直线 xy+2=0 上(1)求数列a n,b n的通项 an 和 bn;(2)设 cn=anbn,求数列c n的前 n 项和 Tn24求函数 f(x)= 4x+4 在
8、0 ,3上的最大值与最小值精选高中模拟试卷第 6 页,共 16 页瑞昌市外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】解:几何体如图所示,则 V= ,故选:A【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键2 【答案】D【解析】解:由奇函数 f(x)可知 ,即 x 与 f(x)异号,而 f(1)=0 ,则 f(1)= f(1)=0,又 f(x)在(0,+)上为增函数,则奇函数 f(x)在( ,0)上也为增函数,当 0x1 时,f(x)f(1)=0,得 0,满足;当 x1 时,f(x)f(1)=0,得 0,不满足,
9、舍去;当1 x 0 时, f(x)f(1)=0,得 0,满足;当 x1 时,f (x)f(1)=0,得 0,不满足,舍去;所以 x 的取值范围是1x 0 或 0x1故选 D【点评】本题综合考查奇函数定义与它的单调性3 【答案】A【解析】解:正方体中不在同一表面上两顶点 A(1,2,1),B (3,2,3),AB 是正方体的体对角线,AB= ,设正方体的棱长为 x,精选高中模拟试卷第 7 页,共 16 页则 ,解得 x=4正方体的棱长为 4,故选:A【点评】本题主要考查了空间两点的距离公式,以及正方体的体积的有关知识,属于基础题4 【答案】D【解析】解:每一项冠军的情况都有 5 种,故 5 名学
10、生争夺三项冠军,获得冠军的可能的种数是 53,故选:D【点评】本题主要考查分步计数原理的应用,属于基础题5 【答案】B【解析】解:A=1,2,3, 4,B=3,4,5,6 ,AB=3,4 ,全集 I=1,2,3,4,5,6,I( AB)=1,2,5,6,故选 B【点评】本题考查交、并、补集的混合运算,是基础题解题时要认真审题,仔细解答,注意合理地进行等价转化6 【答案】A【解析】解:令 F(x)=f (x)2x1,则 F(x )=f (x) 2,又f(x)的导数 f(x)在 R 上恒有 f(x)2,F(x )=f (x) 20 恒成立,F(x)=f(x )2x1 是 R 上的减函数,又F(1)
11、=f( 1)21=0,当 x1 时,F(x)F (1)=0 ,即 f(x)2x 10,即不等式 f(x)2x+1 的解集为(1,+);故选 A【点评】本题考查了导数的综合应用及利用函数求解不等式的方法应用,属于中档题7 【答案】D精选高中模拟试卷第 8 页,共 16 页【解析】解:命题是特称命题,则命题的否定是x R,都有 x1 或 x1,故选:D【点评】本题主要考查含有量词的命题的否定,比较基础8 【答案】C【解析】解:函数 y=f(x)对任意实数 x 都有 f(1+x ) =f(1 x),且函数 f(x)在1,+)上为单调函数函数 f(x)关于直线 x=1 对称,数列 an是公差不为 0
12、的等差数列,且 f(a 6)=f(a 23),a6+a23=2则a n的前 28 项之和 S28= =14(a 6+a23)=28故选:C【点评】本题考查了等差数列的通项公式性质及其前 n 项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题9 【答案】A 【解析】试题分析: , 为奇函2,cos2s,cossgxxgxxA cosygx数,排除 B,D,令 时 ,故选 A. 10.1y考点:1、函数的图象及性质;2、选择题“特殊值”法.10【答案】 A【解析】进行简单的合情推理【专题】规律型;探究型【分析】将 M 中的元素按从大到小排列,求第 2013 个数所对应的 ai,首先要搞清
13、楚,M 集合中元素的特征,同样要分析求第 2011 个数所对应的十进制数,并根据十进制转换为八进行的方法,将它转换为八进制数,即得答案【解答】因为 = (a 1103+a2102+a310+a4),括号内表示的 10 进制数,其最大值为 9999;从大到小排列,第 2013 个数为99992013+1=7987精选高中模拟试卷第 9 页,共 16 页所以 a1=7,a 2=9,a 3=8,a 4=7则第 2013 个数是故选 A【点评】对十进制的排序,关键是要找到对应的数是几,如果从大到小排序,要找到最大数(即第一个数),再找出第 n 个数对应的十进制的数即可11【答案】D111【解析】考点:
14、相等函数的概念.12【答案】C【解析】解:从 1,2,3,4,5 中任取 3 个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共 10 种,其中只有(3,4,5)为勾股数,故这 3 个数构成一组勾股数的概率为 故选:C二、填空题13【答案】 【解析】解:当 时,函数 y=4x 的图象如下图所示若不等式 4xlog ax 恒成立,则 y=logax 的图象恒在 y=4x 的图象的上方(如图中虚线所示)精选高中模拟试卷第 10 页,共 16 页y=logax 的图象与 y=4x
15、 的图象交于( ,2)点时,a=故虚线所示的 y=logax 的图象对应的底数 a 应满足 a1故答案为:( ,1)14【答案】 245fxx【解析】试题分析:由题意得,令 ,则 ,则 ,所以函数1tt22(1)8()145fttt的解析式为 .fx2fxx考点:函数的解析式.15【答案】 64 【解析】解:由图可知甲的得分共有 9 个,中位数为 28甲的中位数为 28乙的得分共有 9 个,中位数为 36乙的中位数为 36则甲乙两人比赛得分的中位数之和是 64故答案为:64【点评】求中位数的关键是根据定义仔细分析另外茎叶图的茎是高位,叶是低位,这一点一定要注意16【答案】 2 【解析】解:由
16、a6=a5+2a4 得,a 4q2=a4q+2a4,精选高中模拟试卷第 11 页,共 16 页即 q2q2=0,解得 q=2 或 q=1,又各项为正数,则 q=2,故答案为:2【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题17【答案】 =1【解析】解:由题意得,圆心 C(1,0),半径等于 4,连接 MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点 M 的轨迹是:以 A、C 为焦点的椭圆,2a=4,即有 a=2,c=1,b= ,椭圆的方程为 =1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于
17、中档题18【答案】 7.5 【解析】解:由表格可知 =9, =4,这组数据的样本中心点是(9,4),根据样本中心点在线性回归直线 =0.7x+ 上,4=0.79+ , =2.3,这组数据对应的线性回归方程是 =0.7x2.3,x=14, =7.5,故答案为:7.5【点评】本题考查线性回归方程,考查样本中心点,做本题时要注意本题把利用最小二乘法来求线性回归方程的系数的过程省掉,只要求 a 的值,这样使得题目简化,注意运算不要出错精选高中模拟试卷第 12 页,共 16 页三、解答题19【答案】 【解析】解:(1) (xN *)6(2)盈利额为 当且仅当 即 x=7 时,上式取到等号11答:使用游艇
18、平均 7 年的盈利额最大12【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题20【答案】 【解析】解:()f(x)的导数为 f(x)= a,由题意可得 f( 1)=0,且 f(1)=1,即为 1a=0,且 ab=1,解得 a=1b= 2,经检验符合题意故 a=1,b= 2;()由()可得 f(x)= a,x1,0 1,若 a0,f ( x)0,f (x )在(1,+)递增;0a1,x (1, ),f(x)0,x ( ,+), f(x)0;a1,f (x) 0f (x)在( 1,+)递减综上可得,a0,f(x)在(1,+)递增;0a1,f(x)在(1, )递增,在( ,
19、+)递减;a1,f(x)在(1,+)递减()f (x 0) = a= a,直线 AB 的斜率为 k= = = a,f(x 0)k ,精选高中模拟试卷第 13 页,共 16 页即 x2x1ln x1+(1 )x 2,即为 1ln +(1 ) ,令 t= 1,t 1lnt+(1)t,即 t1tlnt+(tlnt lnt)0 恒成立,令函数 g(t)=t 1tlnt+(tlntlnt),t1,当 0 时,g(t)=lnt+(lnt+1 )= ,令 (t)= tlnt+(tlnt+t 1),t1,(t) =1lnt+(2+lnt )= ( 1)lnt+2 1,当 0 时, (t)0,(t )在(1,+
20、)递减,则 (t) (1)=0,故当 t1 时,g(t)0,则 g(t)在(1,+)递减, g(t )g(1)=0 符合题意;当 1 时,(t)= (1)lnt+210,解得 1t ,当 t(1, ),(t)0, (t)在(1, )递增,(t )(1)=0;当 t(1, ),g(t )0,g(t)在(1, )递增,g(t )g(1)=0,则有当 t(1, ),g(t)0 不合题意即有 0 【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键21【答案】 【解析】解:证明: , , 2()10fxx21021精
21、选高中模拟试卷第 14 页,共 16 页 , (3 分)121 111122 222nnnnnaaaa, ,120a12数列 为等比数列 (4 分)n()证明:设 ,则 512m()fm由 及 得 , , 12a1nna35a130am 在 上递减, , ,(8 分)()fx0,)13()()fff241342ama下面用数学归纳法证明:当 时, N212nn当 时,命题成立 (9 分)假设当 时命题成立,即 ,那么nk212kkkkaa由 在 上递减得()fx0,)2122()()()()kfffmffa 22231kkkam由 得 , ,312321kfff242kk当 时命题也成立, (
22、12 分)n由知,对一切 命题成立,即存在实数 ,使得对 , .nNnN122nnama22【答案】(1) ;(2) 6B7b【解析】1111(2)根据余弦定理,得,2cos2754baB精选高中模拟试卷第 15 页,共 16 页所以 .7b考点:正弦定理与余弦定理23【答案】 【解析】解:(1)S n= an ,当 n2 时,a n=SnSn1= an ,即 an=3an1,a1=S1= ,a 1=3数列 an是等比数列,a n=3n 点 P( bn,b n+1)在直线 xy+2=0 上,bn+1bn=2,即数列b n是等差数列,又 b1=1,b n=2n1(2)c n=anbn=(2n1)
23、3 n,Tn=13+332+533+(2n3)3 n1+(2n 1)3 n,3Tn=132+333+534+(2n3)3 n+(2n 1)3 n+1,两式相减得:2T n=3+2(3 2+33+34+3n) (2n1)3 n+1,=62(n1)3 n+1,Tn=3+(n 1) 3n+124【答案】 【解析】解: ,f(x)=x 24,由 f(x)=x 24=0,得 x=2,或 x=2,x 0, 3,x=2,当 x 变化时,f(x),f (x)的变化情况如下表:x 0 (0,2) 2 (2,3) 3f(x) 0 +f(x) 4 单调递减极小值单调递增 1由上表可知,当 x=0 时,f (x) max=f(0)=4,精选高中模拟试卷第 16 页,共 16 页当 x=2 时,