1、精选高中模拟试卷第 1 页,共 14 页珲春市外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如果函数 f(x)的图象关于原点对称,在区间上是减函数,且最小值为 3,那么 f(x)在区间上是( )A增函数且最小值为 3 B增函数且最大值为 3C减函数且最小值为3 D减函数且最大值为32 已知 x0,y0, + =1,不等式 x+y2m1 恒成立,则 m 的取值范围( )A(, B( , C( , D(, 3 函数 y=ax+2(a0 且 a1)图象一定过点( )A(0,1) B( 0,3) C(1,0) D(3,0)4 从 5 名男生、1 名
2、女生中,随机抽取 3 人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A B C D5 若等边三角形 的边长为 2, 为 的中点,且 上一点 满足 ,ANABMCxAyB则当 取最小值时, ( )14xyMA6 B5 C4 D36 已知向量 , ,若 ,则实数 ( )(,1)at(2,1)bt|abtA. B. C. D. 22【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力7 双曲线 =1(m Z)的离心率为( )A B2 C D38 在下列区间中,函数 f( x)= ( ) xx 的零点所在的区间为(
3、)A(0,1) B(1,2) C(2,3 ) D(3,4)9 集合 A=1,2,3,集合 B=1,1,3,集合 S=AB,则集合 S 的子集有( )精选高中模拟试卷第 2 页,共 14 页A2 个 B3 个 C4 个 D8 个10某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在 内的人数分别为( )90,1A20,2 B24,4 C25,2 D25,411已知直线 l平面 ,P,那么过点 P 且平行于 l 的直线( )A只有一条,不在平面 内B只有一条,在平面 内C有两条,不一定都在平面 内D有无数条,不一定都在平面 内12设偶
4、函数 f(x)满足 f(x)=2 x4(x0),则x|f(x2)0= ( )Ax|x2 或 x4 Bx|x0 或 x4 Cx|x0 或 x6 Dx|0x4二、填空题13过原点的直线 l 与函数 y= 的图象交于 B,C 两点,A 为抛物线 x2=8y 的焦点,则| + |= 14已知向量 满足 , , ,则 与 的夹角为 . ba,42|b4)3()baab【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题.15已知过双曲线 的右焦点 的直线交双曲线于 两点,连结 ,若21(0,)xyab2F,AB1,FB,且 ,则双曲线的离心率为( )1|ABF
5、9ABA B C D55263632精选高中模拟试卷第 3 页,共 14 页【命题意图】本题考查双曲线定义与几何性质,意要考查逻辑思维能力、运算求解能力,以及考查数形结合思想、方程思想、转化思想16分别在区间 、 上任意选取一个实数 ,则随机事件“ ”的概率为_.0,1,eab、 lnab17【盐城中学 2018 届高三上第一次阶段性考试】已知函数 f(x)= ,对任意的 m2,2,3f(mx2)+f(x)0 恒成立,则 x 的取值范围为_18在等差数列 中, ,其前 项和为 ,若 ,则 的值等于 .na2016nnS28102016S【命题意图】本题考查等差数列的通项公式、前 项和公式,对等
6、差数列性质也有较高要求,属于中等难度.三、解答题19已知椭圆 + =1(ab0)的离心率为 ,且 a2=2b(1)求椭圆的方程;(2)直线 l:xy+m=0 与椭圆交于 A,B 两点,是否存在实数 m,使线段 AB 的中点在圆 x2+y2=5 上,若存在,求出 m 的值;若不存在,说明理由20(本题满分 12 分)在 中,已知角 所对的边分别是 ,边 ,且ABC,ABC,abc72,又 的面积为 ,求 的值tant3tanAB32ABCS精选高中模拟试卷第 4 页,共 14 页21已知矩阵 A ,向量 .求向量 ,使得 A2 .22从某居民区随机抽取 10 个家庭,获得第 i 个家庭的月收入
7、xi(单位:千元)与月储蓄 yi(单位:千元)的数据资料,计算得 xi=80, yi=20, xiyi=184, xi2=720(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为 7 千元,预测该家庭的月储蓄23(本小题满分 10 分)选修 44:坐标系与参数方程以坐标原点为极点,以 轴的非负半轴为极轴建立极坐标系,已知曲线 的极坐标方程为方程为x C2r=( ),直线 的参数方程为 ( 为参数),0l2tcosinxya=+t(I)点 在曲线 上,且曲线 在点 处的切线与直线 垂直,求点 的直角坐标和曲线 CDCD+2=0x
8、yD的参数方程;精选高中模拟试卷第 5 页,共 14 页(II)设直线 与曲线 有两个不同的交点,求直线 的斜率的取值范围lCl24已知 a0,a 1,命题 p:“函数 f(x)=a x 在(0,+)上单调递减”,命题 q:“ 关于 x 的不等式 x22ax+0 对一切的 xR 恒成立”,若 pq 为假命题,pq 为真命题,求实数 a 的取值范围精选高中模拟试卷第 6 页,共 14 页珲春市外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】解:由奇函数的性质可知,若奇函数 f(x)在区间上是减函数,且最小值 3,则那么 f(x)在区间上
9、为减函数,且有最大值为 3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础2 【答案】D【解析】解:x0,y0, + =1,不等式 x+y2m1 恒成立,所以(x+y)( + )=10+ 10 =16,当且仅当 时等号成立,所以 2m116,解得 m ;故 m 的取值范围是( ;故选 D3 【答案】B【解析】解:由于函数 y=ax (a0 且 a1)图象一定过点( 0,1),故函数 y=ax+2(a0 且 a1)图象一定过点(0,3),故选 B【点评】本题主要考查指数函数的单调性和特殊点,属于基础题4 【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第
10、三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为 ,第二次不被抽到的概率为 ,第三次被抽到的概率是 ,女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是 = ,故选 B精选高中模拟试卷第 7 页,共 14 页5 【答案】D【解析】试题分析:由题知 , ;设 ,则(1)CBBMCxAyABMkA,可得 ,当 取最小值时, ,最小值,1xky1xy44145xyxyxy在 时取到,此时 ,将 代入,则42,3,N2MC.故本题答案选 D.2 133xyCNxACBABxy 考点:1.向量的线性运算;2.基本不等式6 【答案】B【解析】由 知, , ,解得 ,故选 B.|abab(2
11、)10t1t7 【答案】B【解析】解:由题意,m 240 且 m0,mZ,m=1双曲线的方程是 y2 x2=1a 2=1,b 2=3,c 2=a2+b2=4a=1,c=2,离心率为 e= =2故选:B【点评】本题的考点是双曲线的简单性质,考查由双曲线的方程求三参数,考查双曲线中三参数的关系:c2=a2+b28 【答案】A【解析】解:函数 f(x)=( ) xx,可得 f(0)=10,f(1)= 0f(2)= 0,函数的零点在(0,1)故选:A9 【答案】C【解析】解:集合 A=1,2,3,集合 B=1,1,3,精选高中模拟试卷第 8 页,共 14 页集合 S=AB=1,3,则集合 S 的子集有
12、 22=4 个,故选:C【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础10【答案】C【解析】考点:茎叶图,频率分布直方图11【答案】B【解析】解:假设过点 P 且平行于 l 的直线有两条 m 与 nml 且 nl由平行公理 4 得 mn这与两条直线 m 与 n 相交与点 P 相矛盾又因为点 P 在平面内所以点 P 且平行于 l 的直线有一条且在平面内所以假设错误故选 B【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型12【答案】D【解析】解:偶函数 f(x) =2x4(x0),故它的图象关于 y 轴对
13、称,且图象经过点(2,0)、(0,3),(2,0),故 f(x2)的图象是把 f(x)的图象向右平移 2 个单位得到的,故 f(x2)的图象经过点( 0,0)、(2,3),(4,0),则由 f(x2)0,可得 0 x4,故选:D精选高中模拟试卷第 9 页,共 14 页【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题二、填空题13【答案】 4 【解析】解:由题意可得点 B 和点 C 关于原点对称,| + |=2| |,再根据 A 为抛物线 x2=8y 的焦点,可得 A(0,2),2| |=4,故答案为:4【点评】本题主要考查抛物线的方程、简单性质,属于基础题,利用| + |
14、=2| |是解题的关键14【答案】 32【解析】15【答案】B【解析】精选高中模拟试卷第 10 页,共 14 页16【答案】 1e【解析】解析: 由 得 ,如图所有实数对 表示的区域的面积为 ,满足条件“ ”lnabae(,)abeabe的实数对 表示的区域为图中阴影部分,其面积为 ,随机事件“ ”的概率(,) 1100|aed ln为 1e17【答案】 2,3精选高中模拟试卷第 11 页,共 14 页【解析】18【答案】 2016三、解答题19【答案】【解析】解:(1)由题意得 e= = ,a 2=2b,a 2b 2=c2,解得 a= ,b=c=1精选高中模拟试卷第 12 页,共 14 页故
15、椭圆的方程为 x2+ =1;(2)设 A(x 1,y 1),B(x 2,y 2),线段 AB 的中点为 M(x 0,y 0)联立直线 y=x+m 与椭圆的方程得,即 3x2+2mx+m22=0 ,=(2m) 2 43(m 22)0,即 m23,x1+x2= ,所以 x0= = ,y 0=x0+m= ,即 M( , )又因为 M 点在圆 x2+y2=5 上,可得( )2 +( ) 2=5,解得 m=3 与 m23 矛盾故实数 m 不存在【点评】本题考查椭圆的方程的求法,注意运用离心率公式,考查直线和椭圆方程联立,运用韦达定理和中点坐标公式,考查存在性问题的解法,属于中档题20【答案】 12【解析
16、】试题解析:由 tant3tan3ABAB可得 ,即 .1() , , .t()CtCta , .0,3又 的面积为 , ,即 , .AB2ABCS13sin2b132ab6ab精选高中模拟试卷第 13 页,共 14 页又由余弦定理可得 , ,22coscabC227()cos3ab , , , .127()()3ab14012ab考点:解三角形问题【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到两角和与两角差的正切函数公式、三角形的面积、正弦定理和余弦定理,以及特殊角的三角函数值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,其中熟练掌握基本公式和灵活
17、运用公式是解答本题的关键,属于中档试题21【答案】 【解析】A 2 .设 .由 A2 ,得 ,从而解得 x-1,y2,所以 22【答案】 【解析】解:(1)由题意,n=10, = xi=8, = yi=2,b= =0.3, a=20.38=0.4,y=0.3x0.4;(2)b=0.3 0,y 与 x 之间是正相关;(3)x=7 时,y=0.3 70.4=1.7(千元)23【答案】【解析】【命题意图】本题考查圆的参数方程和极坐标方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力精选高中模拟试卷第 14 页,共 14 页()设直线 : 与半圆 相切时 l2)(xky )0(22yx 21|k, , (舍去)0142k33k设点 , ,),(BAB故直线 的斜率的取值范围为 . l 2,(24【答案】 【解析】解:若 p 为真,则 0a1;若 q 为真,则=4a 210,得 ,又 a0,a1, 因为 pq 为假命题,pq 为真命题,所以 p,q 中必有一个为真,且另一个为假当 p 为真,q 为假时,由 ;当 p 为假,q 为真时, 无解 综上,a 的取值范围是 【点评】1求解本题时,应注意大前提“a0,a 1”,a 的取值范围是在此条件下进行的