收藏 分享(赏)

金州区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9523476 上传时间:2019-08-12 格式:DOC 页数:17 大小:710.50KB
下载 相关 举报
金州区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
金州区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
金州区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
金州区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
金州区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页金州区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图是某几何体的三视图,则该几何体任意两个顶点间的距离的最大值为( )A4 B5 C D3232 xR ,x 22x+30 的否定是( )A不存在 xR,使x 22x+30 BxR,x 22x+30Cx R,x 22x+30 DxR,x 22x+303 “x0”是“x 0”是的( )A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件4 已知函数 f(x)的定义域为 R,其导函数 f(x)的图象如图所示,则对于任意 x1,x

2、2R( x1x2),下列结论正确的是( )f(x)0 恒成立;(x 1x2)f(x 1)f(x 2)0;(x 1x2)f(x 1)f(x 2)0; ; 精选高中模拟试卷第 2 页,共 17 页A B C D5 设 f(x)是定义在 R 上的恒不为零的函数,对任意实数 x,yR ,都有 f(x)f(y)=f(x+y),若 a1=,a n=f(n)(nN *),则数列a n的前 n 项和 Sn的取值范围是( )A ,2) B ,2 C ,1) D ,16 若定义在 R 上的函数 f(x)满足 f(0)= 1,其导函数 f(x)满足 f(x)k1,则下列结论中一定错误的是( )A B C D7 已知

3、集合 ,且 使 中元素 和 中的元421,23,73ka*,aNxAyB31yxA素 对应,则 的值分别为( )xaA B C D2,3,4,5,8 已知条件 p:x 2+x20,条件 q:xa,若 q 是 p 的充分不必要条件,则 a 的取值范围可以是( )Aa1 Ba 1 Ca 1 Da 39 函数 y=sin2x+cos2x 的图象,可由函数 y=sin2xcos2x 的图象( )A向左平移 个单位得到 B向右平移 个单位得到C向左平移 个单位得到 D向左右平移 个单位得到10设 、 是两个不同的平面,l、m 为两条不同的直线,命题 p:若平面 ,l,m,则 lm;命题q:l, ml,m

4、 ,则 ,则下列命题为真命题的是( )Ap 或 q Bp 且 q Cp 或 q Dp 且q11用反证法证明某命题时,对结论:“自然数 a,b,c 中恰有一个偶数”正确的反设为( )Aa,b,c 中至少有两个偶数Ba, b,c 中至少有两个偶数或都是奇数精选高中模拟试卷第 3 页,共 17 页Ca, b,c 都是奇数Da,b,c 都是偶数12已知抛物线 的焦点为 , ,点 是抛物线上的动点,则当 的值最小时,24yxF(1,0)AP|PFA的PAF面积为( )A. B. C. D. 2224【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.二、填空题13一个棱长为

5、2 的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为_14已知曲线 y=(a3)x 3+lnx 存在垂直于 y 轴的切线,函数 f(x)=x 3ax23x+1 在1,2 上单调递减,则 a 的范围为 15如图所示,在三棱锥 CABD 中,E、F 分别是 AC 和 BD 的中点,若 CD=2AB=4,EFAB,则 EF 与 CD所成的角是 16设 为锐角, =(cos ,sin ), =(1,1)且 = ,则 sin(+ )= 精选高中模拟试卷第 4 页,共 17 页17过椭圆 + =1(ab0)的左焦点 F1作 x 轴的垂线交椭圆于点 P,F 2为右焦点,若F

6、1PF2=60,则椭圆的离心率为 18已知点 M(x,y)满足 ,当 a0,b0 时,若 ax+by 的最大值为 12,则 + 的最小值是 三、解答题19已知函数 f(x)=|x1|+|xa| (I)若 a=1,解不等式 f(x )3;(II)如果x R,f(x)2,求 a 的取值范围20本小题满分 12 分已知椭圆 的离心率为 ,长轴端点与短轴端点间的距离为 2C63求椭圆 的长轴长;C过椭圆 中心 O 的直线与椭圆 交于 A、B 两点 A、B 不是椭圆 的顶点,点 M 在长轴所在直线上,且C,直线 BM 与椭圆交于点 D,求证:AD AB。2MA 精选高中模拟试卷第 5 页,共 17 页2

7、1如图,摩天轮的半径 OA 为 50m,它的最低点 A 距地面的高度忽略不计地面上有一长度为 240m 的景观带 MN,它与摩天轮在同一竖直平面内,且 AM=60m点 P 从最低点 A 处按逆时针方向转动到最高点 B 处,记AOP= ,(0,)(1)当 = 时,求点 P 距地面的高度 PQ;(2)试确定 的值,使得MPN 取得最大值22化简:(1) (2) + 23已知函数 f(x)=|xa|(1)若不等式 f(x)3 的解集为x|1x 5,求实数 a 的值;(2)在(1)的条件下,若 f(x)+f(x+5 ) m 对一切实数 x 恒成立,求实数 m 的取值范围精选高中模拟试卷第 6 页,共

8、17 页24已知a n为等比数列, a1=1,a 6=243S n为等差数列 bn的前 n 项和,b 1=3,S 5=35(1)求a n和 Bn的通项公式;(2)设 Tn=a1b1+a2b2+anbn,求 Tn精选高中模拟试卷第 7 页,共 17 页金州区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】试题分析:因为根据几何体的三视图可得,几何体为下图 相互垂直,面 面,ADBGAEFG,根据几何体的性质得:,/,3,1ABCEABDGE 223,(3)C, ,所以最长为 22734524,10,FC考点:几何体的三视图及几何体的结构

9、特征2 【答案】C【解析】解:因为特称命题的否定是全称命题,所以,xR,x 22x+30 的否定是:xR,x 22x+30故选:C3 【答案】B【解析】解:当 x=1 时,满足 x0,但 x0 不成立当 x0 时,一定有 x0 成立,“x 0”是“x 0”是的必要不充分条件故选:B4 【答案】 D【解析】解:由导函数的图象可知,导函数 f(x)的图象在 x 轴下方,即 f(x)0,故原函数为减函数,并且是,递减的速度是先快后慢所以 f(x)的图象如图所示f(x)0 恒成立,没有依据,故 不正确;表示(x 1x2)与f (x 1)f (x 2)异号,即 f(x)为减函数故正确;表示(x 1x2)

10、与f (x 1)f (x 2)同号,即 f(x)为增函数故不正确,左边边的式子意义为 x1,x 2中点对应的函数值,即图中点 B 的纵坐标值,精选高中模拟试卷第 8 页,共 17 页右边式子代表的是函数值得平均值,即图中点 A 的纵坐标值,显然有左边小于右边,故不正确,正确,综上,正确的结论为故选 D5 【答案】C【解析】解:对任意 x,y R,都有 f(x) f(y)=f(x+y),令 x=n,y=1,得 f(n) f(1)=f(n+1),即 = =f(1)= ,数列a n是以 为首项,以 为等比的等比数列,a n=f(n)=( ) n,S n= =1( ) n ,1)故选 C【点评】本题主

11、要考查了等比数列的求和问题,解题的关键是根据对任意 x,yR ,都有 f(x)f(y)=f(x+y)得到数列a n是等比数列,属中档题6 【答案】C【解析】解;f(x)=f(x)k1,精选高中模拟试卷第 9 页,共 17 页 k1,即 k1,当 x= 时,f( )+1 k= ,即 f( ) 1=故 f( ) ,所以 f( ) ,一定出错,故选:C7 【答案】D【解析】试题分析:分析题意可知:对应法则为 ,则应有 (1)或31yx423ak(2),由于 ,所以(1)式无解,解(2)式得: 。故选 D。4231ak*aN25a考点:映射。8 【答案】A【解析】解:条件 p:x 2+x20,条件 q

12、:x2 或 x1q 是 p 的充分不必要条件a1 故选 A9 【答案】C【解析】解:y=sin2x+cos2x= sin(2x+ ),y=sin2xcos2x= sin(2x )= sin2(x )+ ),由函数 y=sin2xcos2x 的图象向左平移 个单位得到 y= sin(2x+ ),精选高中模拟试卷第 10 页,共 17 页故选:C【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键10【答案】 C【解析】解:在长方体 ABCDA1B1C1D1中命题 p:平面 AC 为平面 ,平面 A1C1为平面 ,直线 A1D1,和直线 AB 分别是直线 m,l

13、,显然满足 ,l ,m,而 m 与 l 异面,故命题 p 不正确; p 正确;命题 q:平面 AC 为平面 ,平面 A1C1为平面 ,直线 A1D1,和直线 AB 分别是直线 m,l ,显然满足 l,ml,m,而 ,故命题 q 不正确; q 正确;故选 C【点评】此题是个基础题考查面面平行的判定和性质定理,要说明一个命题不正确,只需举一个反例即可,否则给出证明;考查学生灵活应用知识分析解决问题的能力11【答案】B【解析】解:结论:“自然数 a,b,c 中恰有一个偶数”可得题设为:a,b,c 中恰有一个偶数反设的内容是 假设 a,b,c 中至少有两个偶数或都是奇数故选 B【点评】此题考查了反证法

14、的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“12【答案】B 【解析】设 ,则 .又设 ,则 , ,所以2(,)4yP221|4()yFA214yt24yt1精选高中模拟试卷第 11 页,共 17 页,当且仅当 ,即 时,等号成立,此时点 ,22| 14()PFtAt2ty(1,2)P的面积为 ,故选B.|Fy二、填空题13【答案】【解析】【知识点】空间几何体的三视图与直观图【试题解析】正方体 中,BC 中点为 E,CD 中点为 F,则截面为即截去一个三棱锥 其体积为:所以该几何体的体积为:故答案为:14【答案】 【解析】解:因为 y

15、=(a3) x3+lnx 存在垂直于 y 轴的切线,即 y=0 有解,即 y=在 x0 时有解,所以 3(a3)x 3+1=0,即 a30,所以此时 a3函数 f(x)=x 3ax23x+1 在1,2 上单调递减,则 f(x)0 恒成立,即 f(x)=3x 22ax30 恒成立,即 ,因为函数 在1,2上单调递增,所以函数 的最大值为 ,所以 ,所以 综上 故答案为: 【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用精选高中模拟试卷第 12 页,共 17 页15【答案】 30 【解析】解:取 AD 的中点 G,连接 EG,GF 则 EG DC=2,GF

16、AB=1,故GEF 即为 EF 与 CD 所成的角又FEAB FEGF在 RtEFG 中 EG=2,GF=1 故 GEF=30故答案为:30【点评】此题的关键是作出 AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了16【答案】: 【解析】解: =cossin= ,1sin2= ,得 sin2= ,为锐角,cossin = (0, ),从而 cos2取正值,cos2= = ,为锐角,sin(+ )0,sin(+ )= = = 故答案为: 17【答案】 精选高中模拟试卷第 13 页,共 17 页【解析】解:由题意知点 P 的坐标为(c, )或( c, )

17、,F 1PF2=60, = ,即 2ac= b2= (a 2c2) e2+2e =0,e= 或 e= (舍去)故答案为: 【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题18【答案】 4 【解析】解:画出满足条件的平面区域,如图示:,由 ,解得:A (3,4),显然直线 z=ax+by 过 A(3, 4)时 z 取到最大值 12,此时:3a+4b=12,即 + =1, + =( + )( + )=2+ + 2+2 =4,当且仅当 3a=4b 时“= ”成立,精选高中模拟试卷第 14 页,共 17 页故答案为:4【点评】本题考查了简单的线性规划,考

18、查了利用基本不等式求最值,解答此题的关键是对“1” 的灵活运用,是基础题三、解答题19【答案】 【解析】解:()当 a=1 时,f(x)=|x+1|+|x1| ,由 f(x)3 即|x+1|+|x1| 3当 x1 时,不等式可化为x 1+1x3,解得 x ;当1 x 1 时,不等式化为 x+1+1x3,不可能成立,即 x;当 x1 时,不等式化为 x+1+x13,解得 x 综上所述,f(x)3 的解集为(, ,+); ()由于|x 1|+|xa|(x1)(x a)|=|a1|,则 f(x)的最小值为|a1|要使xR ,f (x)2 成立,则|a 1|2,解得 a3 或 a1,即 a 的取值范围

19、是(,13 ,+)【点评】本题考查绝对值不等式的解法,考查不等式恒成立问题转化为求函数的最值,运用分类讨论和绝对值不等式的性质,是解题的关键20【答案】【解析】由已知 ,又 ,解得 ,26,43cab22abc223,1ab所以椭圆 的长轴长C以 O 为坐标原点长轴所在直线为 x 轴建立如图平面直角坐标系 ,xOy不妨设椭圆 的焦点在 x 轴上,则由 1 可知椭圆 的方程为 ;C213设 A ,D ,则 A1(,)xy2()(,)y M210根据题意,BM 满足题意的直线斜率存在,设 ,1:(2)lykx精选高中模拟试卷第 15 页,共 17 页联立 ,消去 y 得 ,213()xyk2221

20、1(13)30kxkx,222221143(4)k11, ,xxk221121121()()(5)43ADyxxkxk 11()3ABkxkAD ABD 21【答案】 【解析】解:(1)由题意得 PQ=5050cos,从而当 时,PQ=5050cos =75即点 P 距地面的高度为 75 米(2)由题意得,AQ=50sin ,从而 MQ=6050sin,NQ=30050sin又 PQ=5050cos,所以 tan ,tan 从而 tanMPN=tan(NPQ MPQ)= 令 g()= (0,)则 , (0,)由 g()=0 ,得 sin+cos1=0,解得 当 时,g()0,g()为增函数;当

21、 x 时,g()0,g()为减函数精选高中模拟试卷第 16 页,共 17 页所以当 = 时, g()有极大值,也是最大值因为 所以 从而当 g()=tanMNP 取得最大值时,MPN 取得最大值即当 时,MPN 取得最大值【点评】本题考查了与三角函数有关的最值问题,主要还是利用导数研究函数的单调性,进一步求其极值、最值22【答案】 【解析】解 (1)原式= = = = =1(2)tan()= tan,sin( )=cos,cos( )=cos( )=sin ,tan(+)=tan,原式= + = + = = =1【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数化简求值,考查计算能力2

22、3【答案】 【解析】解:(1)由 f(x) 3 得|x a|3,解得 a3xa+3又已知不等式 f(x)3 的解集为x|1x 5,所以 解得 a=2(2)当 a=2 时,f(x)=|x 2|设 g(x)=f(x)+f(x+5 ),精选高中模拟试卷第 17 页,共 17 页于是所以当 x3 时, g(x)5 ;当3 x2 时,g(x)=5 ;当 x2 时,g(x)5综上可得,g(x)的最小值为 5从而,若 f(x)+f(x+5 ) m即 g(x)m 对一切实数 x 恒成立,则 m 的取值范围为( ,5 【点评】本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,24【答案】 【解析】解:()a n为等比数列, a1=1,a 6=243,1q 5=243,解得 q=3, S n为等差数列b n的前 n 项和,b 1=3,S 5=3553+ d=35,解得 d=2,bn=3+( n1)2=2n+1 ()T n=a1b1+a2b2+anbn,得:,整理得: 【点评】本题考查数列的通项公式的求法,考查数列的前 n 项和的求法,解题时要认真审题,注意错位相减法的合理运用

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报