收藏 分享(赏)

扎囊实验中学2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9523120 上传时间:2019-08-12 格式:DOC 页数:15 大小:430.50KB
下载 相关 举报
扎囊实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共15页
扎囊实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共15页
扎囊实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共15页
扎囊实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共15页
扎囊实验中学2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 15 页扎囊县实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 函数 y=ax+2(a0 且 a1)图象一定过点( )A(0,1) B( 0,3) C(1,0) D(3,0)2 已知集合 P=x|1xb,bN,Q=x|x 23x0,xZ,若 PQ,则 b 的最小值等于( )A0 B1 C2 D33 设集合 A=x|x+2=0,集合 B=x|x24=0,则 AB=( )A 2 B2 C2,2 D4 设 a,b 为实数,若复数 ,则 ab=( )A2 B1 C1 D25 下列推断错误的是( )A命题“若 x23x+2=

2、0,则 x=1”的逆否命题为“若 x1 则 x23x+20”B命题 p:存在 x0R,使得 x02+x0+10,则非 p:任意 xR,都有 x2+x+10C若 p 且 q 为假命题,则 p,q 均为假命题D“ x 1”是“x 23x+20”的充分不必要条件6 甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如表所示:甲 乙 丙 丁平均环数 x 8.3 8.8 8.8 8.7方差 ss 3.5 3.6 2.2 5.4从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是( )A甲 B乙 C丙 D丁7 高一新生军训时,经过两天的打靶训练,甲每射击 10 次可以击中 9 次,乙每

3、射击 9 次可以击中 8 次甲、乙两人射击同一目标(甲、乙两人互不影响),现各射击一次,目标被击中的概率为( )A B C D8 已知 i 为虚数单位,则复数 所对应的点在( )A第一象限 B第二象限 C第三象限 D第四象限精选高中模拟试卷第 2 页,共 15 页9 已知 f(x)为 R 上的偶函数,对任意 xR 都有 f(x+6 )=f(x)+f(3),x 1,x 20,3,x 1x2时,有成立,下列结论中错误的是( )Af(3)=0B直线 x=6 是函数 y=f(x)的图象的一条对称轴C函数 y=f( x)在9,9上有四个零点D函数 y=f(x)在9, 6上为增函数10直线 的倾斜角为(

4、)310yA B C D150 120 60 3011在 中, , , ,则等于( )BCb3cA B C 或 D23212已知函数 f(x)=lg(1 x)的值域为( ,1 ,则函数 f(x)的定义域为( )A9,+) B0,+) C( 9,1) D 9,1)二、填空题13已知 是函数 两个相邻的两个极值点,且 在1,3xsin0fxfx32处的导数 ,则 _02f114抛物线 C1:y 2=2px(p0)与双曲线 C2: 交于 A,B 两点,C 1与 C2的两条渐近线分别交于异于原点的两点 C,D,且 AB,CD 分别过 C2,C 1的焦点,则 = 15“ 黑白配 ”游戏,是小朋友最普及的

5、一种游戏,很多时候被当成决定优先权的一种方式它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负现在甲乙丙三人一起玩“黑白配” 游戏设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 16若函数 f(x)=x 2(2a1 )x+a+1 是区间(1,2)上的单调函数,则实数 a 的取值范围是 17求函数 在区间 上的最大值 精选高中模拟试卷第 3 页,共 15 页18在ABC 中,已知 =2,b=2a,那么 cosB 的值是 三、解答题19已知函

6、数 f(x)=|2x+1| ,g(x)=|x|+a()当 a=0 时,解不等式 f(x)g(x);()若存在 xR,使得 f( x) g(x)成立,求实数 a 的取值范围20已知函数 f(x)=2sin(x+)(0, )的部分图象如图所示;(1)求 ,;(2)将 y=f(x)的图象向左平移 (0)个单位长度,得到 y=g(x)的图象,若 y=g(x)图象的一个对称点为( ,0),求 的最小值(3)对任意的 x , 时,方程 f(x)=m 有两个不等根,求 m 的取值范围精选高中模拟试卷第 4 页,共 15 页21某人在如图所示的直角边长为 4 米的三角形地块的每个格点(指纵、横直线的交叉点以及

7、三角形顶点)处都种了一株相同品种的作物根据历年的种植经验,一株该种作物的年收获 Y(单位:kg)与它的“ 相近”作物株数 X 之间的关系如下表所示:X 1 2 3 4Y 51 48 45 42这里,两株作物“相近” 是指它们之间的直线距离不超过 1 米(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“ 相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望22已知 f(x)=x 3+3ax2+3bx+c 在 x=2 处有极值,其图象在 x=1 处的切线与直线 6x+2y+5=0 平行(1)求函数的单调区间;(2)若 x1,3时,f (x) 14c2恒

8、成立,求实数 c 的取值范围精选高中模拟试卷第 5 页,共 15 页23请你设计一个包装盒,如图所示,ABCD 是边长为 60cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得 A,B,C,D 四个点重合于图中的点 P,正好形成一个正四棱柱形状的包装盒,E、F 在 AB 上,是被切去的等腰直角三角形斜边的两个端点,设 AE=FB=x(cm)(1)若广告商要求包装盒侧面积 S(cm 2)最大,试问 x 应取何值?(2)若广告商要求包装盒容积 V(cm 3)最大,试问 x 应取何值?并求出此时包装盒的高与底面边长的比值24已知函数 (1)求 f(x)的周期和及其图

9、象的对称中心;(2)在ABC 中,角 A、B、 C 的对边分别是 a、b、c,满足(2a c)cosB=bcosC ,求函数 f(A)的取值范围精选高中模拟试卷第 6 页,共 15 页扎囊县实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:由于函数 y=ax (a0 且 a1)图象一定过点( 0,1),故函数 y=ax+2(a0 且 a1)图象一定过点(0,3),故选 B【点评】本题主要考查指数函数的单调性和特殊点,属于基础题2 【答案】C【解析】解:集合 P=x|1xb,bN,Q=x|x 23x0,xZ=1,2,PQ ,可得 b 的

10、最小值为:2故选:C【点评】本题考查集合的基本运算,交集的意义,是基础题3 【答案】A【解析】解:由 A 中的方程 x+2=0,解得 x=2,即 A=2;由 B 中的方程 x24=0,解得 x=2 或 2,即 B=2,2 ,则 AB=2故选 A【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键4 【答案】C【解析】解: ,因此 ab=1故选:C5 【答案】C【解析】解:对于 A,命题“若 x23x+2=0,则 x=1”的逆否命题为“ 若 x1 则 x23x+20”,正确;对于 B,命题 p:存在 x0R,使得 x02+x0+10,则非 p:任意 xR,都有 x2+x+10,正确;

11、对于 C,若 p 且 q 为假命题,则 p,q 至少有一个为假命题,故 C 错误;对于 D,x 23x+20 x2 或 x1,故“x1”是“x 23x+20” 的充分不必要条件,正确综上所述,错误的选项为:C,精选高中模拟试卷第 7 页,共 15 页故选:C【点评】本题考查命题的真假判断与应用,着重考查全称命题与特称命题的理解与应用,考查复合命题与充分必要条件的真假判断,属于中档题6 【答案】C【解析】解:甲、乙、丙、丁四人的平均环数乙和丙均为 8.8 环,最大,甲、乙、丙、丁四人的射击环数的方差中丙最小,丙的射击水平最高且成绩最稳定,从这四个人中选择一人参加该运动会射击项目比赛,最佳人选是丙

12、故选:C【点评】本题考查运动会射击项目比赛的最佳人选的确定,是基础题,解题时要认真审题,注意从平均数和方差两个指标进行综合评价7 【答案】 D【解析】【解答】解:由题意可得,甲射中的概率为 ,乙射中的概率为 ,故两人都击不中的概率为(1 )(1 )= ,故目标被击中的概率为 1 = ,故选:D【点评】本题主要考查相互独立事件的概率乘法公式,所求的事件的概率与它的对立事件的概率之间的关系,属于基础题8 【答案】A【解析】解: = =1+i,其对应的点为(1,1),故选:A9 【答案】D【解析】解:对于 A:y=f(x)为 R 上的偶函数,且对任意 xR,均有 f(x+6)=f(x)+f(3),令

13、 x=3 得:f(63)=f(3)+f(3)=2f(3),f(3)=0 ,故 A 正确;精选高中模拟试卷第 8 页,共 15 页对于 B:函数 y=f(x)是以 6 为周期的偶函数,f( 6+x)=f( x),f ( 6x)=f(x),f( 6+x)=f( 6x),y=f(x)图象关于 x=6 对称,即 B 正确;对于 C:y=f(x)在区间3,0上为减函数,在区间0,3 上为增函数,且 f(3)=f( 3)=0,方程 f(x)=0 在3,3上有 2 个实根(3 和 3),又函数 y=f(x)是以 6 为周期的函数,方程 f(x)=0 在区间9, 3)上有 1 个实根(为9),在区间(3,9上

14、有一个实根(为 9),方程 f(x)=0 在9,9上有 4 个实根故 C 正确;对于 D:当 x1,x 20,3且 x1x2时,有 ,y=f(x)在区间0,3上为增函数,又函数 y=f(x)是偶函数,y=f(x)在区间3,0上为减函数,又函数 y=f(x)是以 6 为周期的函数,y=f(x)在区间9, 6上为减函数,故 D 错误综上所述,命题中正确的有 A、B、C故选:D【点评】本题考查抽象函数及其应用,命题真假的判断,着重考查函数的奇偶性、对称性、周期性、单调性,考查函数的零点,属于中档题10【答案】C【解析】试题分析:由直线 ,可得直线的斜率为 ,即 ,故选 C.1310xy3ktan36

15、0考点:直线的斜率与倾斜角.11【答案】C【解析】考点:余弦定理12【答案】D【解析】解:函数 f(x)=lg(1x)在( ,1)上递减,由于函数的值域为(,1,则 lg(1x)1,精选高中模拟试卷第 9 页,共 15 页则有 01x10,解得,9x1则定义域为 9,1),故选 D【点评】本题考查函数的值域和定义域问题,考查函数的单调性的运用,考查运算能力,属于基础题二、填空题13【答案】 12【解析】考点:三角函数图象与性质,函数导数与不等式【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此

16、求得周期和 ,再结合极值点的导数等于零,可求出 .在求 的过程中,由于题目没有给定它的取值范围,需要用 来验证.求出 表达式后, 302ffx就可以求出 .113f14【答案】 【解析】解:由题意,CD 过 C1的焦点,根据 ,得 xC= ,b=2a;由 AB 过 C2的焦点,得 A(c, ),即 A(c,4a),A(c,4a)在 C1上,16a 2=2pc,精选高中模拟试卷第 10 页,共 15 页又 c= a,a= , = = 故答案为: 【点评】本题考查双曲线、抛物线的简单性质,考查学生的计算能力,属于中档题15【答案】 【解析】解:一次游戏中,甲、乙、丙出的方法种数都有 2 种,所以总

17、共有 23=8 种方案,而甲胜出的情况有:“甲黑乙白丙白”,“ 甲白乙黑丙黑”,共 2 种,所以甲胜出的概率为故答案为 【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目16【答案】 a| 或 【解析】解:二次函数 f(x)=x 2(2a1)x+a+1 的对称轴为 x=a ,f(x)=x 2(2a1)x+a+1 是区间(1,2)上的单调函数, 区间(1,2)在对称轴的左侧或者右侧,a 2,或 a 1,a ,或 a ,故答案为:a|a ,或 a 【点评】本题考查二次函数的性质,体现了分类讨论的数学思想17【答案】 【解析】解:f(x)=sin 2x+ sinxcosx精选高中模

18、拟试卷第 11 页,共 15 页= + sin2x=sin(2x )+ 又 x , ,2x , ,sin(2x ) ,1,sin(2x ) + 1, 即 f(x)1 , 故 f(x)在区间 , 上的最大值为 故答案为: 【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题18【答案】 【解析】解: =2,由正弦定理可得: ,即 c=2ab=2a, = = cosB= 故答案为: 【点评】本题考查了正弦定理与余弦定理,考查了推理能力与计算能力,属于中档题三、解答题19【答案】 【解析】解:()当 a=0 时,由 f(x)g(x)得|2x+1|x,两边平方

19、整理得 3x2+4x+10,精选高中模拟试卷第 12 页,共 15 页解得 x1 或 x 原不等式的解集为 ( ,1 ,+) ()由 f(x)g(x) 得 a|2x+1|x|,令 h(x)=|2x+1| |x|,即 h(x)= ,故 h(x) min=h( )= ,故可得到所求实数 a 的范围为 ,+)【点评】本题主要考查带有绝对值的函数,绝对值不等式的解法,求函数的最值,属于中档题20【答案】 【解析】解:(1)根据函数 f(x)=2sin(x+)(0, )的部分图象,可得 = ,求得 =2再根据五点法作图可得 2 += ,求得 = ,f(x)=2sin(2x )(2)将 y=f(x)的图象

20、向左平移 (0)个单位长度,得到 y=g(x)=2sin=2sin(2x+2 )的图象,y=g(x)图象的一个对称点为( ,0),2 +2 =k,kZ,= ,故 的最小正值为 (3)对任意的 x , 时,2x , ,sin(2x ),即 f(x),方程 f(x)=m 有两个不等根,结合函数 f(x),x , 时的图象可得,1m2精选高中模拟试卷第 13 页,共 15 页21【答案】 【解析】【专题】概率与统计【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“ 相近”的概率;(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望【解

21、答】解:(I)所种作物总株数 N=1+2+3+4+5=15,其中三角形地块内部的作物株数为 3,边界上的作物株数为 12,从三角形地块的内部和边界上分别随机选取一株的不同结果有 =36 种,选取的两株作物恰好“相近” 的不同结果有 3+3+2=8, 从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好 “相近”的概率为 = ;(II)先求从所种作物中随机选取一株作物的年收获量为 Y 的分布列P( Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P (X=3),P(Y=42)=P(X=4)只需求出 P(X=k)(k=1,2,3,4)即可记 nk为其“相近” 作物恰有 k

22、 株的作物株数(k=1 ,2,3, 4),则 n1=2,n 2=4,n 3=6,n 4=3由 P(X=k)= 得 P(X=1)= ,P(X=2)= ,P (X=3)= = ,P(X=4)= =所求的分布列为 Y 51 48 45 42P数学期望为 E(Y)=51 +48 +45 +42 =46【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题22【答案】 【解析】解:(1)由题意:f(x)=3x 2+6ax+3b 直线 6x+2y+5=0 的斜率为3;由已知 所以 (3 分)所以由 f(x) =3x26x0 得心 x0 或 x2;所以当 x(0,2)时,函数单

23、调递减;精选高中模拟试卷第 14 页,共 15 页当 x(,0),(2,+ )时,函数单调递增 (6 分)(2)由(1)知,函数在 x(1,2)时单调递减,在 x(2,3)时单调递增;所以函数在区间1,3有最小值 f(2)=c4 要使 x1,3,f(x)14c 2恒成立只需 14c2c 4 恒成立,所以 c 或 c1故 c 的取值范围是c|c 或 c1(12 分)【点评】本题主要考查函数在某点取得极值的条件和导数的几何意义,以及利用导数解决函数在闭区间上的最值问题和函数恒成立问题,综合性较强,属于中档题23【答案】 【解析】解:设包装盒的高为 h(cm),底面边长为 a(cm),则 a= x,

24、h= (30x),0x30(1)S=4ah=8x(30x)=8(x15) 2+1800,当 x=15 时,S 取最大值(2)V=a 2h=2 (x 3+30x2),V =6 x(20x),由 V=0 得 x=20,当 x(0,20)时,V0 ;当 x(20,30)时,V 0;当 x=20 时,包装盒容积 V(cm 3)最大,此时, 即此时包装盒的高与底面边长的比值是 24【答案】 【解析】解:(1)由 ,f(x)的周期为 4由 ,故 f(x)图象的对称中心为 (2)由(2ac)cosB=bcosC ,得(2sinAsinC)cosB=sinBcosC,2sinAcosBcosBsinC=sinBcosC,2sinAcosB=sin(B+C), A+B+C=, sin(B+C)=sinA,且 sinA0, ,精选高中模拟试卷第 15 页,共 15 页故函数 f(A)的取值范围是

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报