1、精选高中模拟试卷第 1 页,共 18 页灵宝市实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知正方体 ABCDA1B1C1D1中,点 E 为上底面 A1C1的中心,若 + ,则 x、y 的值分别为( )Ax=1,y=1 Bx=1,y= Cx= ,y= Dx= ,y=12 设集合 S=|x|x 1 或 x5,T=x|axa+8 ,且 ST=R,则实数 a 的取值范围是( )A3 a 1 B 3a1 Ca 3 或 a1 Da3 或 a 13 已知变量 x 与 y 负相关,且由观测数据算得样本平均数 =3, =2.7,则由该观测数据算得的线性回归
2、方程可能是( )A =0.2x+3.3 B =0.4x+1.5 C =2x3.2 D =2x+8.64 已知 ab0,那么下列不等式成立的是( )Aa b Ba+cb+c C( a) 2(b) 2 D5 “1 x2”是“x2”成立的( )A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件6 已知集合 , ,若 ,则 ( ),052|ZxxM,0aNNMaA B C 或 D 或1 1127 如图 RtOAB是一平面图形的直观图,斜边 OB=2,则这个平面图形的面积是( )A B1 C D8 如图所示,网格纸表示边长为 1 的正方形,粗实线画出的是某几何体的三视图,则该几何体
3、的表面积为( )A B6035+60+3514C D14精选高中模拟试卷第 2 页,共 18 页【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力9 若某程序框图如图所示,则该程序运行后输出的值是( )A. B. C. D. 78910【命题意图】本题考查阅读程序框图,理解程序框图的功能,本质是循环语句循环终止的条件.10某公园有 P,Q,R 三只小船,P 船最多可乘 3 人,Q 船最多可乘 2 人,R 船只能乘 1 人,现有 3 个大人和 2 个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )精选高中模拟试卷第 3 页,共 1
4、8 页A36 种 B18 种 C27 种 D24 种11一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何体的体积为( )A B(4+ ) C D12已知双曲线 C: =1(a0,b0)的左、右焦点分别为 F1,F 2,过点 F1作直线 lx 轴交双曲线 C的渐近线于点 A,B 若以 AB 为直径的圆恰过点 F2,则该双曲线的离心率为( )A B C2 D二、填空题13已知曲线 y=(a3)x 3+lnx 存在垂直于 y 轴的切线,函数 f(x)=x 3ax23x+1 在1,2 上单调递减,则 a 的范围为 14已知 sin+cos= ,且 ,则 sincos 的值为 15已知
5、函数 的一条对称轴方程为 ,则函数 的最大值为( 21()sincosifxax6x()fx)A1 B1 C D 2【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想16已知圆 O:x 2+y2=1 和双曲线 C: =1(a0,b0)若对双曲线 C 上任意一点 A(点 A 在圆 O外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,则 = 精选高中模拟试卷第 4 页,共 18 页17下列命题:终边在 y 轴上的角的集合是a|a= ,k Z;在同一坐标系中,函数 y=sinx 的图象和函数 y=x 的图象有三个公共点;把函
6、数 y=3sin(2x+ )的图象向右平移 个单位长度得到 y=3sin2x 的图象;函数 y=sin( x )在0,上是减函数其中真命题的序号是 18平面向量 , 满足|2 |=1,| 2 |=1,则 的取值范围 三、解答题19设 a,b 互为共轭复数,且(a+b) 23abi=412i求 a,b 的值20如图,三棱柱 ABCA1B1C1中,AB=AC=AA 1=BC1=2, AA1C1=60,平面 ABC1平面 AA1C1C,AC 1与A1C 相交于点 D(1)求证:BD平面 AA1C1C;(2)求二面角 C1ABC 的余弦值精选高中模拟试卷第 5 页,共 18 页21(本小题满分 14
7、分)设函数 , (其中 , ).2()1cosfxabx0,2abR(1)若 , ,求 的单调区间;0()f(2)若 ,讨论函数 在 上零点的个数.bx0,2【命题意图】本题主要考查利用导数研究函数的单调性,最值、通过研究函数图象与性质,讨论函数的零点个数,考查考生运算求解能力、转化能力和综合应用能力,是难题.22某重点大学自主招生考试过程依次为自荐材料审查、笔试、面试共三轮考核。规定:只能通过前一轮考核才能进入下一轮的考核,否则将被淘汰;三轮考核都通过才算通过该高校的自主招生考试。学生甲三轮考试通过的概率分别为 23, 4, 5,且各轮考核通过与否相互独立。(1)求甲通过该高校自主招生考试的
8、概率;精选高中模拟试卷第 6 页,共 18 页(2)若学生甲每通过一轮考核,则家长奖励人民币 1000 元作为大学学习的教育基金。记学生甲得到教育基金的金额为 X,求 的分布列和数学期望。23(本题满分 12 分)有人在路边设局,宣传牌上写有“掷骰子,赢大奖”.其游戏规则是这样的:你可以在 1,2,3,4,5,6 点中任选一个,并押上赌注 元,然后掷 1 颗骰子,连续掷 3 次,若你所押的点数m在 3 次掷骰子过程中出现 1 次, 2 次,3 次,那么原来的赌注仍还给你,并且庄家分别给予你所押赌注的1 倍,2 倍,3 倍的奖励.如果 3 次掷骰子过程中,你所押的点数没出现,那么你的赌注就被庄家
9、没收.(1)求掷 3 次骰子,至少出现 1 次为 5 点的概率;(2)如果你打算尝试一次,请计算一下你获利的期望值,并给大家一个正确的建议.24已知椭圆 ,过其右焦点 F 且垂直于 x 轴的弦 MN 的长度为 b()求该椭圆的离心率;()已知点 A 的坐标为( 0,b),椭圆上存在点 P,Q,使得圆 x2+y2=4 内切于APQ,求该椭圆的方程精选高中模拟试卷第 7 页,共 18 页灵宝市实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:如图,+ + ( )故选 C2 【答案】A【解析】解:S=|x|x 1 或 x5,T=x|axa+
10、8 ,且 ST=R , ,解得: 3a 1故选:A【点评】本题考查并集及其运算,关键是明确两集合端点值间的关系,是基础题3 【答案】A【解析】解:变量 x 与 y 负相关,排除选项 B,C ;回归直线方程经过样本中心,把 =3, =2.7,代入 A 成立,代入 D 不成立故选:A4 【答案】C【解析】解:a b0, ab0,( a) 2(b) 2,故选 C【点评】本题主要考查不等式的基本性质的应用,属于基础题5 【答案】A精选高中模拟试卷第 8 页,共 18 页【解析】解:设 A=x|1x2 ,B=x|x2,AB,故“1 x 2” 是 “x2”成立的充分不必要条件故选 A【点评】本题考查的知识
11、点是必要条件,充分条件与充要条件判断,其中熟练掌握集合法判断充要条件的原则“谁小谁充分,谁大谁必要”,是解答本题的关键6 【答案】D【解析】试题分析:由 ,集合 ,1,2,025,052 ZxxZxM aN,0又 , 或 ,故选 DN1a考点:交集及其运算7 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边 OB=2,直角三角形的直角边长是 ,直角三角形的面积是 ,原平面图形的面积是 12 =2故选 D8 【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长 ,宽 的矩形,高为 3,且 平62VE面 ,如图所示,所以此四棱锥表面积为 AB1S=20+1345+26,
12、故选 C61035=+46461010113 26EVD CBA9 【答案】A精选高中模拟试卷第 9 页,共 18 页【解析】运行该程序,注意到循环终止的条件,有 n 10,i 1;n 5,i 2;n 16,i 3;n 8,i 4;n4,i 5;n 2,i 6;n 1,i 7,到此循环终止,故选 A.10【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分 4 种情况讨论,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 1 个大人,R 船乘 1个大 1 人,P 船乘 1 个大人和 1 个小孩共 2 人,Q 船乘 1 个大人和 1 个小孩,R 船乘 1
13、 个大 1 人,P 船乘 2 个大人和 1 个小孩共 3 人,Q 船乘 1 个大人和 1 个小孩, ,P 船乘 1 个大人和 2 个小孩共 3人,Q 船乘 2 个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分 4 种情况讨论,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 1 个大人, R 船乘 1 个大 1 人,有 A33=6 种情况,P 船乘 1 个大人和 1 个小孩共 2 人,Q 船乘 1 个大人和 1 个小孩,R 船乘 1 个大 1 人,有 A33A22=12 种情况,P 船乘 2 个大人和 1 个小孩共 3 人,Q 船乘 1 个大人和 1 个
14、小孩,有 C322=6 种情况,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 2 个大人,有 C31=3 种情况,则共有 6+12+6+3=27 种乘船方法,故选 C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式11【答案】 D【解析】解:由三视图知,几何体是一个组合体,是由半个圆锥和一个四棱锥组合成的几何体,圆柱的底面直径和母线长都是 2,四棱锥的底面是一个边长是 2 的正方形,四棱锥的高与圆锥的高相同,高是 = ,几何体的体积是 = ,故选 D【点评】本题考查由三视图求组合体的体积,考查由三视图还原直观图,本题的三视图比较
15、特殊,不容易看出直观图,需要仔细观察12【答案】D精选高中模拟试卷第 10 页,共 18 页【解析】解:设 F1( c,0), F2(c,0),则 l 的方程为 x=c,双曲线的渐近线方程为 y= x,所以 A(c, c)B (c, c)AB 为直径的圆恰过点 F2F 1是这个圆的圆心AF 1=F1F2=2c c=2c,解得 b=2a离心率为 = =故选 D【点评】本题考查了双曲线的性质,如焦点坐标、离心率公式二、填空题13【答案】 【解析】解:因为 y=(a3) x3+lnx 存在垂直于 y 轴的切线,即 y=0 有解,即 y=在 x0 时有解,所以 3(a3)x 3+1=0,即 a30,所
16、以此时 a3函数 f(x)=x 3ax23x+1 在1,2 上单调递减,则 f(x)0 恒成立,即 f(x)=3x 22ax30 恒成立,即 ,因为函数 在1,2上单调递增,所以函数 的最大值为 ,所以 ,所以 综上 故答案为: 【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用14【答案】 精选高中模拟试卷第 11 页,共 18 页【解析】解:sin+cos= , ,sin 2+2sin cos+cos 2= ,2sincos= 1= ,且 sincos,sincos= = 故答案为: 15【答案】A【解析】16【答案】 1 【解析】解:若对双曲线 C
17、上任意一点 A(点 A 在圆 O 外),均存在与圆 O 外切且顶点都在双曲线 C 上的菱形 ABCD,可通过特殊点,取 A(1,t),则 B(1,t),C(1,t ),D(1,t ),由直线和圆相切的条件可得,t=1将 A(1,1)代入双曲线方程,可得 =1故答案为:1【点评】本题考查双曲线的方程和运用,同时考查直线和圆相切的条件,属于基础题17【答案】 精选高中模拟试卷第 12 页,共 18 页【解析】解:、终边在 y 轴上的角的集合是a|a= ,k Z,故错误;、设 f(x)=sinx x,其导函数 y=cosx10,f(x)在 R 上单调递减,且 f(0)=0 ,f(x)=sinxx 图
18、象与轴只有一个交点f(x)=sinx 与 y=x 图象只有一个交点,故错误;、由题意得,y=3sin2 (x )+ =3sin2x,故 正确;、由 y=sin( x )= cosx 得,在0 ,上是增函数,故错误故答案为:【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中 4 个命题的真假,是解答本题的关键18【答案】 ,1 【解析】解:设两个向量的夹角为 ,因为|2 |=1,| 2 |=1,所以 , ,所以 , =所以 5 =1,所以 ,所以 5a21 , ,1,所以 ;故答案为: ,1【点
19、评】本题考查了向量的模的平方与向量的平方相等的运用以及通过向量的数量积定义,求向量数量积的范围三、解答题19【答案】 精选高中模拟试卷第 13 页,共 18 页【解析】解:因为 a,b 互为共轭复数,所以设 a=x+yi,则 b=xyi,a+b=2x,ab=x 2+y2,所以 4x23(x 2+y2)i=412i ,所以 ,解得 ,所以 a=1+ i,b=1 i;或 a=1 i,b=1+ i;或 a=1+ i,b= 1 i;或 a=1 i,b= 1+ i【点评】本题考查了共轭复数以及复数相等;正确设出 a,b 是解答的关键20【答案】 【解析】解:(1)四边形 AA1C1C 为平行四边形,AC
20、=A 1C1,AC=AA 1, AA1=A1C1,AA 1C1=60,AA 1C1为等边三角形,同理ABC 1是等边三角形,D 为 AC1的中点,BDAC 1,平面 ABC1平面 AA1C1C,平面 ABC1平面 AA1C1C=AC1,BD 平面 ABC1,BD平面 AA1C1C(2)以点 D 为坐标原点,DA、DC 、DB 分别为 x 轴、y 轴、z 轴,建立空间直角坐标系,平面 ABC1的一个法向量为 ,设平面 ABC 的法向量为 ,由题意可得 , ,则 ,所以平面 ABC 的一个法向量为 =( ,1,1),cos= 即二面角 C1ABC 的余弦值等于 精选高中模拟试卷第 14 页,共 1
21、8 页【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题21【答案】【解析】(1) , ,0a12b , , . (2 分)()1cos2fxx()sinfx0,令 ,得 .06当 时, ,当 时, ,x()0fx2x()fx所以 的单调增区间是 ,单调减区间是 . (5 分)()f ,0,6精选高中模拟试卷第 15 页,共 18 页若,则 ,又 ,由零点存在定理, ,使12a()102fa()0ff0,2,所以 在 上单调增,在 上单调减.0()fx,2又 , .2()14fa故当 时, ,此时
22、 在 上有两个零点;21a2()0f()fx0,2当 时, ,此时 在 上只有一个零点.2414a,精选高中模拟试卷第 16 页,共 18 页22【答案】(1) 25(2) X的分布列为数学期望为 112470()0203365EX-解析:(1)设“学生甲通过该高校自主招生考试”为事件 A,则 P(A) 2345所以学生甲通过该高校自主招生考试的概率为 -4 分(2) X的可能取值为 0 元,1000 元,2000 元,3000 元-5 分21(0)3P, 231()()46PX, 2341(0)()50PX45-9 分所以, X的分布列为数学期望为 112470()0203365E-12 分
23、23【答案】【解析】【命题意图】本题考查了独立重复试验中概率的求法,对立事件的基本性质;对化归能力及对实际问题的抽象能力要求较高,属于中档难度.精选高中模拟试卷第 17 页,共 18 页24【答案】 【解析】解:()设 F(c,0),M(c,y 1),N (c,y 2),则 ,得 y1= ,y 2= ,MN=|y1y2|= =b,得 a=2b,椭圆的离心率为: = = ()由条件,直线 AP、AQ 斜率必然存在,设过点 A 且与圆 x2+y2=4 相切的直线方程为 y=kx+b,转化为一般方程 kxy+b=0,由于圆 x2+y2=4 内切于APQ,所以 r=2= ,得 k= (b2),即切线 AP、AQ 关于 y 轴对称,则直线 PQ 平行于 x 轴,y Q=yP=2,不妨设点 Q 在 y 轴左侧,可得 xQ=xP=2 ,精选高中模拟试卷第 18 页,共 18 页则 = ,解得 b=3,则 a=6,椭圆方程为: 【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质