收藏 分享(赏)

临川区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc

上传人:爱你没说的 文档编号:9522508 上传时间:2019-08-12 格式:DOC 页数:17 大小:581.50KB
下载 相关 举报
临川区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第1页
第1页 / 共17页
临川区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第2页
第2页 / 共17页
临川区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第3页
第3页 / 共17页
临川区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第4页
第4页 / 共17页
临川区外国语学校2018-2019学年高二上学期第二次月考试卷数学.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页临川区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若命题 p:xR,x20,命题 q:x R, x,则下列说法正确的是( )A命题 pq 是假命题 B命题 p(q)是真命题C命题 pq 是真命题 D命题 p(q)是假命题2 设奇函数 f(x)在(0, +)上为增函数,且 f(1)=0 ,则不等式 0 的解集为( )A(1 ,0)(1,+ ) B( ,1)(0,1) C( ,1)(1,+)D( 1,0) (0,1)3 如果点 P在平面区域2,xy上,点 Q在曲线 22()xy上,那么 |PQ的最小值为

2、( )A 51 B 415 C. 21 D 214 已知函数 ,若存在常数使得方程 有两个不等的实根21,0)()3,xf ()fxt12,x( ),那么 的取值范围为( )12x1)xfA B C D3,)413,)8631,)623,)85 函数 y=|a|x (a 0 且 a1)的图象可能是( )A B C D6 已知 A,B 是以 O 为圆心的单位圆上的动点,且| |= ,则 =( )A1 B1 C D精选高中模拟试卷第 2 页,共 17 页7 双曲线: 的渐近线方程和离心率分别是( )A B C D8 函数 f(x)的图象向右平移 1 个单位长度,所得图象与曲线 y=ex关于 y 轴

3、对称,则 f(x)=( )Ae x+1 Be x1 Ce x+1 De x19 函数 f(x)=x 22ax,x1,+ )是增函数,则实数 a 的取值范围是( )AR B1,+) C( ,1 D2 ,+)10已知在 R 上可导的函数 f(x)的图象如图所示,则不等式 f(x)f (x)0 的解集为( )A(2 ,0) B( , 2)(1,0) C( ,2)(0,+) D(2,1)(0,+)11边长为 2 的正方形 ABCD 的定点都在同一球面上,球心到平面 ABCD 的距离为 1,则此球的表面积为( )A3 B5 C12 D2012设 aR,且(a i) 2i(i 为虚数单位)为正实数,则 a

4、 等于( )A1 B0 C 1 D0 或1二、填空题13已知点 A 的坐标为( 1,0),点 B 是圆心为 C 的圆(x1) 2+y2=16 上一动点,线段 AB 的垂直平分线交 BC 与点 M,则动点 M 的轨迹方程为 14已知函数 , ,则 , 的值域为 2,()10xf()2xg()fg()fgx 【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力.15设 是空间中给定的 个不同的点,则使 成立的点 的个数有_个精选高中模拟试卷第 3 页,共 17 页16设全集 U=R,集合 M=x|2a1x4a,aR,N=x|1 x2,若 NM,则实数 a

5、的取值范围是 17若直线 xy=1 与直线(m+3)x+my 8=0 平行,则 m= 18设函数 f(x)= 若 ff(a) ,则 a 的取值范围是 三、解答题19已知全集 U=R,函数 y= + 的定义域为 A,B=y|y=2 x,1x2,求:(1)集合 A,B;(2)( UA)B20已知抛物线 C:y 2=2px(p0)过点 A(1,2)()求抛物线 C 的方程,并求其准线方程;()是否存在平行于 OA(O 为坐标原点)的直线 L,使得直线 L 与抛物线 C 有公共点,且直线 OA 与 L的距离等于 ?若存在,求直线 L 的方程;若不存在,说明理由21由四个不同的数字 1,2,4,x 组成

6、无重复数字的三位数(1)若 x=5,其中能被 5 整除的共有多少个?(2)若 x=9,其中能被 3 整除的共有多少个?精选高中模拟试卷第 4 页,共 17 页(3)若 x=0,其中的偶数共有多少个?(4)若所有这些三位数的各位数字之和是 252,求 x22已知椭圆 E 的长轴的一个端点是抛物线 y2=4 x 的焦点,离心率是 (1)求椭圆 E 的标准方程;(2)已知动直线 y=k(x+1 )与椭圆 E 相交于 A、B 两点,且在 x 轴上存在点 M,使得 与 k 的取值无关,试求点 M 的坐标23如图,在五面体 ABCDEF 中,四边形 ABCD 是边长为 4 的正方形,EF AD,平面 AD

7、EF平面 ABCD,且 BC=2EF,AE=AF,点 G 是 EF 的中点()证明:AG平面 ABCD;()若直线 BF 与平面 ACE 所成角的正弦值为 ,求 AG 的长精选高中模拟试卷第 5 页,共 17 页24已知函数 f(x)=lnx axb(a,b R)()若函数 f(x)在 x=1 处取得极值 1,求 a,b 的值()讨论函数 f(x)在区间( 1,+ )上的单调性()对于函数 f(x)图象上任意两点 A(x 1,y 1),B(x 2,y 2)(x 1x 2),不等式 f(x 0)k 恒成立,其中 k 为直线 AB 的斜率,x 0=x1+(1)x 2,01,求 的取值范围精选高中模

8、拟试卷第 6 页,共 17 页临川区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】 B【解析】解:xR,x20,即不等式 x20 有解,命题 p 是真命题;x0 时, x 无解,命题 q 是假命题;pq 为真命题,pq 是假命题,q 是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及 pq,pq,q 的真假和 p,q 真假的关系2 【答案】D【解析】解:由奇函数 f(x)可知 ,即 x 与 f(x)异号,而 f(1)=0 ,则 f(1)= f(1)=0,又 f(x)在(0,+)上为增函数,则奇函数 f

9、(x)在( ,0)上也为增函数,当 0x1 时,f(x)f(1)=0,得 0,满足;当 x1 时,f(x)f(1)=0,得 0,不满足,舍去;当1 x 0 时, f(x)f(1)=0,得 0,满足;当 x1 时,f (x)f(1)=0,得 0,不满足,舍去;所以 x 的取值范围是1x 0 或 0x1故选 D【点评】本题综合考查奇函数定义与它的单调性3 【答案】A【解析】试题分析:根据约束条件画出可行域 |PQZ表示圆上的点到可行域的距离,当在点 A处时,求出圆心到可行域的距离内的点的最小距离 5,当在点 A处最小, |最小值为 15,因此,本题正确答案是 15.精选高中模拟试卷第 7 页,共

10、17 页考点:线性规划求最值.4 【答案】C【解析】试题分析:由图可知存在常数,使得方程 有两上不等的实根,则 ,由 ,可得fxt314t324x,由 ,可得 (负舍),即有 ,即 ,则14x23x312,4x.故本题答案选 C.12121,6f考点:数形结合【规律点睛】本题主要考查函数的图象与性质,及数形结合的数学思想方法.方程解的个数问题一般转化为两个常见的函数图象的交点个数问题来解决.要能熟练掌握几种基本函数图象,如二次函数,反比例函数,指数函数,对数函数,幂函数等.掌握平移变换,伸缩变换,对称变换,翻折变换,周期变换等常用的方法技巧来快速处理图象.精选高中模拟试卷第 8 页,共 17

11、页5 【答案】D【解析】解:当|a|1 时,函数为增函数,且过定点( 0,1 ),因为 01 1,故排除 A,B当|a|1 时且 a0 时,函数为减函数,且过定点(0,1 ),因为 1 0,故排除 C故选:D6 【答案】B【解析】解:由 A,B 是以 O 为圆心的单位圆上的动点,且| |= ,即有| |2+| |2=| |2,可得OAB 为等腰直角三角形,则 , 的夹角为 45,即有 =| | |cos45=1 =1故选:B【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键7 【答案】D【解析】解:双曲线: 的 a=1,b=2,c= =双曲线的渐近线方程为 y=

12、 x=2x;离心率 e= =故选 D8 【答案】D【解析】解:函数 y=ex的图象关于 y 轴对称的图象的函数解析式为 y=ex,而函数 f(x)的图象向右平移 1 个单位长度,所得图象与曲线 y=ex的图象关于 y 轴对称,所以函数 f(x)的解析式为 y=e(x+1) =ex1即 f(x)=e x1故选 D9 【答案】C【解析】解:由于 f(x)=x 22ax 的对称轴是直线 x=a,图象开口向上,故函数在区间(,a 为减函数,在区间a,+)上为增函数,又由函数 f(x)=x 22ax,x1,+ )是增函数,则 a1故答案为:C精选高中模拟试卷第 9 页,共 17 页10【答案】B【解析】

13、解:由 f(x)图象单调性可得 f(x)在( ,1)(0,+ )大于 0,在(1, 0)上小于 0,f( x) f(x)0 的解集为( ,2)(1,0)故选 B11【答案】C【解析】解:正方形的边长为 2,正方形的对角线长为 =2 ,球心到平面 ABCD 的距离为 1,球的半径 R= = ,则此球的表面积为 S=4R2=12故选:C【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键12【答案】B【解析】解:(ai) 2i=2ai+2 为正实数,2a=0,解得 a=0故选:B【点评】本题考查了复数的运算法则、复数为实数的充要条件,属于基础题二、填空题13【答案】 =1【解析】解:由题

14、意得,圆心 C(1,0),半径等于 4,连接 MA,则|MA|=|MB|,|MC|+|MA|=|MC|+|MB|=|BC|=4|AC|=2,故点 M 的轨迹是:以 A、C 为焦点的椭圆,2a=4,即有 a=2,c=1,b= ,精选高中模拟试卷第 10 页,共 17 页椭圆的方程为 =1故答案为: =1【点评】本题考查用定义法求点的轨迹方程,考查学生转化问题的能力,属于中档题14【答案】 , . 21,)【解析】15【答案】1【解析】【知识点】平面向量坐标运算【试题解析】设设 ,则因为 ,所以 ,所以因此,存在唯一的点 M,使 成立。故答案为:精选高中模拟试卷第 11 页,共 17 页16【答案

15、】 ,1 【解析】解:全集 U=R,集合 M=x|2a1x4a,aR,N=x|1x2,N M,2a11 且 4a2,解得 2a ,故实数 a 的取值范围是 ,1 ,故答案为 ,117【答案】 【解析】解:直线 xy=1 的斜率为 1,(m+3)x+my 8=0 斜率为两直线平行,则 =1 解得 m= 故应填 18【答案】 或 a=1 【解析】解:当 时, ,由 ,解得: ,所以 ;当 ,f(a)=2 ( 1a),02(1a)1,若 ,则 ,分析可得 a=1若 ,即 ,因为 212(1a )=4a2,由 ,得: 综上得: 或 a=1故答案为: 或 a=1精选高中模拟试卷第 12 页,共 17 页

16、【点评】本题考查了函数的值域,考查了分类讨论的数学思想,此题涉及二次讨论,解答时容易出错,此题为中档题三、解答题19【答案】 【解析】解:(1)由 ,解得 0x3A=0,3,由 B=y|y=2x,1x2=2, 4,(2) UA=( ,0)3, +),( UA) B=(3,420【答案】 【解析】解:(I)将(1,2)代入抛物线方程 y2=2px,得 4=2p,p=2抛物线 C 的方程为:y 2=4x,其准线方程为 x=1(II)假设存在符合题意的直线 l,其方程为 y=2x+t,由 得 y2+2y2t=0,直线 l 与抛物线有公共点,=4+8t 0,解得 t又直线 OA 与 L 的距离 d=

17、= ,求得 t=1tt=1符合题意的直线 l 存在,方程为 2x+y1=0【点评】本题小题主要考查了直线,抛物线等基础知识,考查推理论证能力,运算求解能力,考查函数与方程思想,数形结合的思想,化归与转化思想,分类讨论与整合思想21【答案】 【解析】精选高中模拟试卷第 13 页,共 17 页【专题】计算题;排列组合【分析】(1)若 x=5,根据题意,要求的三位数能被 5 整除,则 5 必须在末尾,在 1、2、4 三个数字中任选2 个,放在前 2 位,由排列数公式计算可得答案;(2)若 x=9,根据题意,要求的三位数能被 3 整除,则这三个数字为 1、2、9 或 2、4、9,分“取出的三个数字为

18、1、2、9”与“ 取出的三个数字为 2、4、9” 两种情况讨论,由分类计数原理计算可得答案;(3)若 x=0,根据题意,要求的三位数是偶数,则这个三位数的末位数字为 0 或 2 或 4,分“末位是 0”与“末位是 2 或 4”两种情况讨论,由分类计数原理计算可得答案;(4)分析易得 x=0 时不能满足题意,进而讨论 x0 时,先求出 4 个数字可以组成无重复三位数的个数,进而可以计算出每个数字用了 18 次,则有 252=18(1+2+4+x ),解可得 x 的值【解答】解:(1)若 x=5,则四个数字为 1,2,4,5;又由要求的三位数能被 5 整除,则 5 必须在末尾,在 1、2、4 三个

19、数字中任选 2 个,放在前 2 位,有 A32=6 种情况,即能被 5 整除的三位数共有 6 个;(2)若 x=9,则四个数字为 1,2,4,9;又由要求的三位数能被 3 整除,则这三个数字为 1、2、9 或 2、4、9,取出的三个数字为 1、2、9 时,有 A33=6 种情况,取出的三个数字为 2、4、9 时,有 A33=6 种情况,则此时一共有 6+6=12 个能被 3 整除的三位数;(3)若 x=0,则四个数字为 1,2,4,0;又由要求的三位数是偶数,则这个三位数的末位数字为 0 或 2 或 4,当末位是 0 时,在 1、2、4 三个数字中任选 2 个,放在前 2 位,有 A32=6

20、种情况,当末位是 2 或 4 时,有 A21A21A21=8 种情况,此时三位偶数一共有 6+8=14 个,(4)若 x=0,可以组成 C31C31C21=332=18 个三位数,即 1、2、4、0 四个数字最多出现 18 次,则所有这些三位数的各位数字之和最大为(1+2+4)18=126 ,不合题意,故 x=0 不成立;当 x0 时,可以组成无重复三位数共有 C41C31C21=432=24 种,共用了 243=72 个数字,则每个数字用了 =18 次,则有 252=18(1+2+4+x),解可得 x=7【点评】本题考查排列知识,解题的关键是正确分类,合理运用排列知识求解,第(4)问注意分

21、x 为 0 与否两种情况讨论22【答案】精选高中模拟试卷第 14 页,共 17 页【解析】解:(1)由题意,椭圆的焦点在 x 轴上,且 a= ,1 分c=ea= = ,故 b= = = ,4 分所以,椭圆 E 的方程为 ,即 x2+3y2=56 分(2)将 y=k(x+1 )代入方程 E:x 2+3y2=5,得(3k 2+1)x 2+6k2x+3k25=0;7 分设 A(x 1,y 1),B(x 2,y 2),M(m ,0),则x1+x2= ,x 1x2= ;8 分 =(x 1m ,y 1)= (x 1m ,k(x 1+1), =(x 2m,y 2)=(x 2m ,k(x 2+1); =(k

22、2+1)x 1x2+(k 2m )(x 1+x2)+k 2+m2=m2+2m ,要使上式与 k 无关,则有 6m+14=0,解得 m= ;存在点 M( ,0)满足题意13 分【点评】本题考查了直线与圆锥曲线的综合应用问题,也考查了椭圆的标准方程及其几何性质,考查了一定的计算能力,属于中档题23【答案】 【解析】(本小题满分 12 分)()证明:因为 AE=AF,点 G 是 EF 的中点,所以 AGEF又因为 EFAD,所以 AG AD因为平面 ADEF平面 ABCD,平面 ADEF平面 ABCD=AD,AG平面 ADEF,所以 AG平面 ABCD()解:因为 AG平面 ABCD,ABAD,所以

23、 AG、 AD、AB 两两垂直以 A 为原点,以 AB,AD, AG 分别为 x 轴、y 轴和 z 轴,如图建立空间直角坐标系则 A(0,0,0),B(4,0,0),C(4,4,0),设 AG=t(t0 ),则 E(0, 1,t ),F(0,1,t ),所以 =( 4,1,t), =(4,4,0), =(0,1,t)精选高中模拟试卷第 15 页,共 17 页设平面 ACE 的法向量为 =(x,y,z),由 =0, =0,得 ,令 z=1,得 =(t, t,1)因为 BF 与平面 ACE 所成角的正弦值为 ,所以|cos |= = ,即 = ,解得 t2=1 或 所以 AG=1 或 AG= 【点

24、评】本题考查线面垂直的证明,考查满足条件的线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用24【答案】 【解析】解:()f(x)的导数为 f(x)= a,由题意可得 f( 1)=0,且 f(1)=1,即为 1a=0,且 ab=1,解得 a=1b= 2,经检验符合题意故 a=1,b= 2;()由()可得 f(x)= a,x1,0 1,若 a0,f ( x)0,f (x )在(1,+)递增;0a1,x (1, ),f(x)0,x ( ,+), f(x)0;a1,f (x) 0f (x)在( 1,+)递减精选高中模拟试卷第 16 页,共 17 页综上可得,a0,f(x)在(1,+)递增

25、;0a1,f(x)在(1, )递增,在( ,+)递减;a1,f(x)在(1,+)递减()f (x 0) = a= a,直线 AB 的斜率为 k= = = a,f(x 0)k ,即 x2x1ln x1+(1 )x 2,即为 1ln +(1 ) ,令 t= 1,t 1lnt+(1)t,即 t1tlnt+(tlnt lnt)0 恒成立,令函数 g(t)=t 1tlnt+(tlntlnt),t1,当 0 时,g(t)=lnt+(lnt+1 )= ,令 (t)= tlnt+(tlnt+t 1),t1,(t) =1lnt+(2+lnt )= ( 1)lnt+2 1,当 0 时, (t)0,(t )在(1,+)递减,则 (t) (1)=0,故当 t1 时,g(t)0,则 g(t)在(1,+)递减, g(t )g(1)=0 符合题意;当 1 时,(t)= (1)lnt+210,解得 1t ,当 t(1, ),(t)0, (t)在(1, )递增,(t )(1)=0;当 t(1, ),g(t )0,g(t)在(1, )递增,g(t )g(1)=0,精选高中模拟试卷第 17 页,共 17 页则有当 t(1, ),g(t)0 不合题意即有 0 【点评】本题考查导数的运用:求单调区间和极值、最值,同时考查函数的单调性的运用,不等式恒成立思想的运用,运用分类讨论的思想方法是解题的关键

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报