收藏 分享(赏)

安多实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc

上传人:爱你没说的 文档编号:9506140 上传时间:2019-08-11 格式:DOC 页数:17 大小:798KB
下载 相关 举报
安多实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第1页
第1页 / 共17页
安多实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第2页
第2页 / 共17页
安多实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第3页
第3页 / 共17页
安多实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第4页
第4页 / 共17页
安多实验中学2018-2019学年高二上学期第二次月考试卷数学卷.doc_第5页
第5页 / 共17页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 17 页安多县实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 设 为双曲线 的右焦点,若 的垂直平分线与渐近线在第一象限内的交点到F21(0,)xyabOF另一条渐近线的距离为 ,则双曲线的离心率为( )|OFA B C D32232【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想2 双曲线: 的渐近线方程和离心率分别是( )A B C D3 已知直线 a,b 都与平面 相交,则 a,b 的位置关系是( )A平行 B相交 C异面 D以上都有可能4 执行如图所示的程序框图,输出

2、的结果是( )A15 B21 C24 D355 若 cos( )= ,则 cos( +)的值是( )A B C D6 已知函数 f(x)=ax 33x2+1,若 f(x)存在唯一的零点 x0,且 x00,则实数 a 的取值范围是( )A(1,+) B(2,+) C( ,1) D(,2)精选高中模拟试卷第 2 页,共 17 页7 已知点 P(1, ),则它的极坐标是( )A B C D8 已知三次函数 f(x)=ax 3+bx2+cx+d 的图象如图所示,则 =( )A1 B2 C 5 D39 已知直线 l1:(3+m)x+4y=53m ,l 2:2x+(5+m)y=8 平行,则实数 m 的值为

3、( )A7 B 1 C 1 或7 D10函数 在一个周期内的图象如图所示,此函数的解析式为( )sin()yxA B C D232sin()3yx2sin()3xy2sin()3yx11若不等式 1ab2,2a+b 4,则 4a2b 的取值范围是( )A5,10 B( 5,10) C3,12 D(3,12)12已知命题 p:xR,cosxa ,下列 a 的取值能使“p” 是真命题的是( )A1 B0 C1 D2二、填空题13观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49精选高中模拟试卷第 3 页,共 17 页照此规律,第 n 个等式为 14刘老师带甲

4、、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下:甲说:“我们四人都没考好”乙说:“我们四人中有人考的好”丙说:“乙和丁至少有一人没考好”丁说:“我没考好”结果,四名学生中有两人说对 了,则这四名学生中的 两人说对了 15图中的三个直角三角形是一个体积为 20的几何体的三视图,则 _.h16函数 y=lgx 的定义域为 17在 中,角 的对边分别为 ,若 , 的面积 ,ABC、 、 abc、 、 1os2BabABC312Sc则边 的最小值为_c【命题意图】本题考查正弦定理、余弦定理、三角形面积公式、基本不等式等基础知识,意在考查基本运算能力1

5、8利用计算机产生 1 到 6 之间取整数值的随机数 a 和 b,在 a+b 为偶数的条件下,|ab| 2 发生的概率是 三、解答题19【无锡市 2018 届高三上期中基础性检测】已知函数 2ln1.fxmxR(1)当 时,求 的单调区间;mfx(2)令 ,区间 , 为自然对数的底数。gx152,De()若函数 在区间 上有两个极值,求实数 的取值范围;()设函数 在区间 上的两个极值分别为 和 ,1gx2求证: .12xe精选高中模拟试卷第 4 页,共 17 页20(本小题满分 12 分)已知函数 ,数列 满足: , ( ).21()xfna121nnafN(1)求数列 的通项公式;na(2)

6、设数列 的前 项和为 ,求数列 的前 项和 .nSnnT【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.21为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量 (毫克)与时间 (小时)成正比;药物释放完毕后, 与 的函数关系式为 ( 为常数),yt yt1()6tay如图所示据图中提供的信息,回答下列问题:(1)写出从药物释放开始,每立方米空气中的含药量 (毫克)与时间 (小时)之间的函数关系式;t(2)据测定,当空气中每立方米的含药量降低到 毫克以下时,学生方可进教室。那么药物释放开始,至0.25少需要经过多少

7、小时后,学生才能回到教室?精选高中模拟试卷第 5 页,共 17 页22已知函数 y=f(x)的图象与 g(x)=log ax(a0,且 a1)的图象关于 x 轴对称,且 g(x)的图象过(4,2)点()求函数 f(x)的解析式;()若 f(x1)f(5x),求 x 的取值范围23已知全集 U=R,函数 y= + 的定义域为 A,B=y|y=2 x,1x2,求:(1)集合 A,B;(2)( UA)B精选高中模拟试卷第 6 页,共 17 页24一个圆柱形圆木的底面半径为 1m,长为 10m,将此圆木沿轴所在的平面剖成两个部分,现要把其中一个部分加工成直四棱柱木梁,长度保持不变,底面为等腰梯形 AB

8、CD(如图所示,其中 O 为圆心,C,D 在半圆上),设BOC=,直四棱柱木梁的体积为 V(单位:m 3),侧面积为 S(单位:m 2)()分别求 V 与 S 关于 的函数表达式;()求侧面积 S 的最大值;()求 的值,使体积 V 最大精选高中模拟试卷第 7 页,共 17 页安多县实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】2 【答案】D【解析】解:双曲线: 的 a=1,b=2,c= =双曲线的渐近线方程为 y= x=2x;离心率 e= =故选 D3 【答案】D【解析】解:如图,在正方体 ABCDA1B1C1D1中,AA1平面 A

9、BCD=A,BB 1平面 ABCD=B,AA 1BB 1;AA1平面 ABCD=A,AB 1平面 ABCD=A,AA 1与 AB1相交;AA1平面 ABCD=A,CD 1平面 ABCD=C,AA 1与 CD1异面直线 a,b 都与平面 相交,则 a,b 的位置关系是相交、平行或异面故选:D精选高中模拟试卷第 8 页,共 17 页4 【答案】C【解析】【知识点】算法和程序框图【试题解析】 否,否, 否, 是,则输出 S=24故答案为:C5 【答案】B【解析】解:cos( )= ,cos( +)= cos=cos( )= 故选:B6 【答案】D【解析】解:f(x)=ax 33x2+1,f(x)=3

10、ax 26x=3x(ax2),f (0)=1;当 a=0 时,f(x)=3x 2+1 有两个零点,不成立;当 a0 时, f(x)=ax 33x2+1 在(,0)上有零点,故不成立;当 a0 时, f(x)=ax 33x2+1 在(0,+ )上有且只有一个零点;故 f(x)=ax 33x2+1 在( ,0)上没有零点;而当 x= 时,f(x)=ax 33x2+1 在(,0)上取得最小值;故 f( )= 3 +10;故 a2;综上所述,实数 a 的取值范围是(,2);故选:D7 【答案】C【解析】解:点 P 的直角坐标为 ,= =2精选高中模拟试卷第 9 页,共 17 页再由 1=cos, =s

11、in,可得 ,结合所给的选项,可取 = ,即点 P 的极坐标为 (2, ),故选 C【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题8 【答案】C【解析】解:由三次函数的图象可知,x=2 函数的极大值,x= 1 是极小值,即 2,1 是 f(x)=0 的两个根,f(x)=ax 3+bx2+cx+d,f(x)=3ax 2+2bx+c,由 f(x)=3ax 2+2bx+c=0,得 2+( 1)= =1,12= =2,即 c=6a,2b= 3a,即 f(x)=3ax 2+2bx+c=3ax23ax6a=3a(x2)(x+1),则 = = =5,故选:C【点评】本题主要考查函数的极值和导

12、数之间的关系,以及根与系数之间的关系的应用,考查学生的计算能力9 【答案】A【解析】解:因为两条直线 l1:(3+m )x+4y=53m ,l 2:2x+(5+m)y=8,l 1与 l2平行所以 ,解得 m=7故选:A【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力10【答案】B精选高中模拟试卷第 10 页,共 17 页【解析】考点:三角函数 的图象与性质()sin()fxAx11【答案】A【解析】解:令 4a2b=x(a b)+y(a+b)即解得:x=3,y=1即 4a2b=3(a b)+(a+b)1ab2,2a+b4,33(ab)65(ab)+3(a+b) 10故选 A【

13、点评】本题考查的知识点是简单的线性规划,其中令 4a2b=x(a b)+y(a+b),并求出满足条件的 x,y,是解答的关键12【答案】D【解析】解:命题 p:xR, cosxa,则 a1下列 a 的取值能使“p”是真命题的是 a=2故选;D二、填空题13【答案】 n+(n+1 )+(n+2)+(3n2)=(2n1 ) 2 【解析】解:观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是 12,3 2,5 2,7 2第 n 个应该是(2n1) 2左边的式子的项数与右边的底数一致,精选高中模拟试卷第 11 页,共 17 页每一行都是从这一个行数的数

14、字开始相加的,照此规律,第 n 个等式为 n+(n+1)+ (n+2)+(3n2)=(2n1) 2,故答案为:n+(n+1 )+(n+2)+(3n2)=(2n1) 2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题14【答案】乙 ,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。15【答案】【解析】试题分析:由三视图可知该几何体为三棱锥,其中侧棱 底面 ,且 为直角三角形,且VABCA,所以三棱锥的体积为 ,解得 .5

15、,6ABVhC1562032h4h考点:几何体的三视图与体积.16【答案】 x|x0 【解析】解:对数函数 y=lgx 的定义域为:x|x0故答案为:x|x0【点评】本题考查基本函数的定义域的求法17【答案】 1精选高中模拟试卷第 12 页,共 17 页18【答案】 【解析】解:由题意得,利用计算机产生 1 到 6 之间取整数值的随机数 a 和 b,基本事件的总个数是66=36,即(a ,b)的情况有 36 种,事件“ a+b 为偶数” 包含基本事件:(1,1),(1,3),(1,5),(2,2),(2,4),(2,6),(3,1),(3,3),(3,5),(4,2),(4,4),(4,6)(

16、5,1),(5,3),(5,5),(6,2),(6,4),(6,6)共 18 个,“在 a+b 为偶数的条件下,|ab|2”包含基本事件:(1,5),(2,6),(5,1),(6,2)共 4 个,故在 a+b 为偶数的条件下,|ab|2 发生的概率是 P= =故答案为:【点评】本题主要考查概率的计算,以条件概率为载体,考查条件概率的计算,解题的关键是判断概率的类型,从而利用相应公式,分别求出对应的测度是解决本题的关键三、解答题19【答案】(1)增区间 ,减区间 ,(2)详见解析0,2,【解析】试题分析:(1)求导写出单调区间;(2)()函数 在区间 D 上有两个极值,等价于gx在 上有两个不同

17、的零点,令 ,得 ,通过求导分析ln21gxmx52,e 02ln1xm得 的范围为 ;() ,得 ,由分式恒等变换得5123,eln1x122lnlxm精选高中模拟试卷第 13 页,共 17 页,得 ,要证 明12122lnllnlxx1122112 2lnlnlnxxx,只需证 ,即证 ,12xe12lnx1212lnx令 , ,通过求导得到 恒成立,得证。312txl1tpt 0pt试题解析:(2)()因为 ,2lngxmx所以 , ,l211152,xe若函数 在区间 D 上有两个极值,等价于 在 上有两个不同的零点,gx lngmx152,e令 ,得 ,02ln1xm设 ,令2l,x

18、tt0,txex1e12,e12x152,xe52xet大于 0 0 小于 0精选高中模拟试卷第 14 页,共 17 页tx0 增 12e减 526e所以 的范围为m5123,e()由()知,若函数 在区间 D 上有两个极值分别为 和 ,不妨设 ,则gx1gx212x,12lnl2x所以 1212lnlx即 ,12112122lnllxxx要证 ,只需证 ,即证 ,12xe12ln1212lnx令 ,即证 ,即证 ,312txltlt令 ,因为 ,lnptt221140tptt 所以 在 上单调增, ,所以 ,3,1e0pt即 所以 ,得证。2l0tln21t20【答案】【解析】(1) , .

19、 ()xf1()2nnnafa即 ,所以数列 是以首项为 2,公差为 2 的等差数列, 2nana . (5 分)1()(1)d(2)数列 是等差数列,n ,()2nS精选高中模拟试卷第 15 页,共 17 页 . (8 分)11()nSn 123nTS 11()()()()4. (12 分)n21【答案】(1) ;(2)至少经过 0.6 小时才能回到教室。0.1,().6tyx【解析】试题分析:(1)由题意:当 时,y 与 t 成正比,观察图象过点 , ,所以可以求出解.t0,(.1,)析式为 ,当 时,y 与 t 的函数关系为 ,观察图象过点 ,代入得:0yt11()6ta,所以 ,则解析

20、式为 ,所以含药量 y 与 t 的函数关系为:.1()6a. 0.()ty;(2)观察图象可知,药物含量在 段时间内逐渐递增,在 时刻达到最0.1,().tyx ,.10.1t大值 1 毫克,在 时刻后,药物含量开始逐渐减少,当药物含量到 0.25 毫克时,有 ,.t .()2564t所以 ,所以 ,所以至少要经过 0.6 小时,才能回到教室。.5t0.6t试题解析:(1)依题意,当 ,可设 y 与 t 的函数关系式为 ykt ,易求得 k10, y10t, 含药量 y 与时间 t 的函数关系式为(2)由图像可知 y 与 t 的关系是先增后减的,在 时,y 从 0 增加到 1;然后 时,y 从

21、 1 开始递减。 ,解得 t0.6,精选高中模拟试卷第 16 页,共 17 页至少经过 0.6 小时,学生才能回到教室 考点:1.分段函数;2.指数函数;3.函数的实际应用。22【答案】 【解析】解:()g(x)=log ax(a0,且 a1)的图象过点(4,2),log a4=2,a=2,则 g(x)=log 2x函数 y=f(x)的图象与 g(X)的图象关于 x 轴对称, ()f(x 1)f(5x), ,即 ,解得 1x3,所以 x 的取值范围为(1,3)【点评】本题考查对数函数的性质的应用,注意真数大于零,属于基础题23【答案】 【解析】解:(1)由 ,解得 0x3A=0,3,由 B=y

22、|y=2x,1x2=2, 4,(2) UA=( ,0)3, +),( UA) B=(3,424【答案】 【解析】解:()木梁的侧面积 S=10(AB+2BC+CD)=10(2+4sin +2cos)=20(cos+2sin +1),(0, ),梯形 ABCD 的面积 SABCD= sin=sincos+sin,(0, ),体积 V()=10(sin cos+sin),(0, );()木梁的侧面积 S=10(AB+2BC+CD)=10(2+4sin +2cos)精选高中模拟试卷第 17 页,共 17 页=20(cos +1), (0, ),设 g()=cos +1,g( )=2sin 2 +2sin +2,当 sin = , (0, ),即 = 时,木梁的侧面积 s 最大所以 = 时,木梁的侧面积 s 最大为 40m2()V()=10(2cos 2+cos1)=10(2cos 1)(cos+1)令 V()=0 ,得 cos= ,或 cos=1(舍) (0, ),= 当 (0, )时, cos1,V()0,V () 为增函数;当 ( , )时,0 cos,V()0,V () 为减函数当 = 时,体积 V 最大

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 试题课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报