1、精选高中模拟试卷第 1 页,共 21 页呈贡区实验中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 已知函数 21xf,则曲线 yfx在点 1f, 处切线的斜率为( )A1 B C2 D 22 已知全集为 R,集合 A=x|( ) x1,B=x|x 26x+80,则 A( RB)=( )Ax|x0 Bx|2x4 Cx|0x2 或 x4 Dx|0x2 或 x43 已知集合 ,则下列式子表示正确的有( )2|10 ; ; ; 1A,1AA1 个 B2 个 C3 个 D4 个4 若 a0,b0,a+b=1,则 y= + 的最小值是( )A2 B3 C4 D
2、55 设 M=x|2x2,N=y|0y2,函数 f(x)的定义域为 M,值域为 N,则 f(x)的图象可以是( )A BC D6 已知集合 表示的平面区域为 ,若在区域 内任取一点 P(x,y),则点P 的坐标满足不等式 x2+y22 的概率为( )精选高中模拟试卷第 2 页,共 21 页A B C D7 某几何体的三视图如图所示,则该几何体的体积为( )A B C D16332161683328【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力8 在平面直角坐标系中,若不等式组 ( 为常数)表示的区域面积等于 , 则 的值为( )A B C D9 下列
3、给出的几个关系中: ; ; ;,ab,ab,ba ,正确的有( )个0A.个 B.个 C.个 D.个10若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A1:2:3 B2 :3:4 C3:2:4 D3:1:211已知双曲线和离心率为 的椭圆有相同的焦点 , 是两曲线的一个公共点,若sin21F、 P,则双曲线的离心率等于( )2cos1PFA B C D25262712过抛物线 y2=4x 的焦点 F 的直线交抛物线于 A,B 两点,点 O 是原点,若|AF|=3,则AOF 的面积为( )精选高中模拟试卷第 3 页,共 21 页A B C D2二、填空题13已知双曲
4、线 的一条渐近线方程为 y=x,则实数 m 等于 14已知 为常数,若 ,则 _.,ab2 24+3a104fxfxbx, 5ab15求函数 在区间 上的最大值 16已知 的面积为 ,三内角 , , 的对边分别为,若 ,ABCSABC22Sc则 取最大值时 sinco()417已知面积为 的ABC 中,A= 若点 D 为 BC 边上的一点,且满足 = ,则当 AD 取最小时,BD 的长为 18若执行如图 3所示的框图,输入 ,则输出的数等于 。三、解答题19已知奇函数 f(x)= (c R)()求 c 的值;()当 x2,+)时,求 f(x)的最小值精选高中模拟试卷第 4 页,共 21 页20
5、(本小题满分 12 分)如图(1),在三角形 中, 为其中位线,且 ,若沿 将三角形 折起,使PCDAB2BDPCABP,构成四棱锥 ,且 .PAPFE(1)求证:平面 平面 ;EF(2)当 异面直线 与 所成的角为 时,求折起的角度.321(1)已知 f(x)的定义域为 2,1 ,求函数 f(3x1 )的定义域;(2)已知 f(2x+5 )的定义域为1,4,求函数 f(x)的定义域精选高中模拟试卷第 5 页,共 21 页22已知等差数列a n的首项和公差都为 2,且 a1、a 8分别为等比数列b n的第一、第四项(1)求数列a n、b n的通项公式;(2)设 cn= ,求c n的前 n 项和
6、 Sn23已知圆 C 经过点 A(2,0),B(0,2),且圆心在直线 y=x 上,且,又直线 l:y=kx+1 与圆 C 相交于 P、Q 两点()求圆 C 的方程;()若 ,求实数 k 的值;()过点(0,1)作直线 l1 与 l 垂直,且直线 l1 与圆 C 交于 M、N 两点,求四边形 PMQN 面积的最大值24如图,已知椭圆 C ,点 B 坐标为(0,1),过点 B 的直线与椭圆 C 的另外一个交点为 A,且线段 AB 的中点 E 在直线 y=x 上(1)求直线 AB 的方程;精选高中模拟试卷第 6 页,共 21 页(2)若点 P 为椭圆 C 上异于 A,B 的任意一点,直线 AP,B
7、P 分别交直线 y=x 于点 M,N,直线 BM 交椭圆 C 于另外一点 Q证明:OMON 为定值;证明:A、Q、N 三点共线精选高中模拟试卷第 7 页,共 21 页呈贡区实验中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】试题分析:由已知得 21xf,则 21fx,所以 1f考点:1、复合函数;2、导数的几何意义.2 【答案】C【解析】解: 1= ,x0,A=x|x0;又 x26x+80(x 2)(x4) 0,2x4B=x|2x4,RB=x|x2 或 x4,ARB=x|0x2 或 x4,故选 C3 【答案】C【解析】试题分析: ,所以正确
8、.故选 C.1,A考点:元素与集合关系,集合与集合关系4 【答案】C【解析】解:a0,b0,a+b=1,y= + =(a+b) =2+ =4,当且仅当 a=b= 时取等号y= + 的最小值是 4故选:C【点评】本题考查了“乘 1 法”与基本不等式的性质,属于基础题5 【答案】B精选高中模拟试卷第 8 页,共 21 页【解析】解:A 项定义域为2,0,D 项值域不是0 ,2,C 项对任一 x 都有两个 y 与之对应,都不符故选 B【点评】本题考查的是函数三要素,即定义域、值域、对应关系的问题6 【答案】D【解析】解:作出不等式组对应的平面区域如图,则对应的区域为AOB,由 ,解得 ,即 B(4,
9、 4),由 ,解得 ,即 A( , ),直线 2x+y4=0 与 x 轴的交点坐标为(2,0),则OAB 的面积 S= = ,点 P 的坐标满足不等式 x2+y22 区域面积 S= ,则由几何概型的概率公式得点 P 的坐标满足不等式 x2+y22 的概率为 = ,故选:D精选高中模拟试卷第 9 页,共 21 页【点评】本题考查的知识点是几何概型,二元一次不等式(组)与平面区域,求出满足条件 A 的基本事件对应的“ 几何度量” N(A),再求出总的基本事件对应的 “几何度量 ”N,最后根据几何概型的概率公式进行求解7 【答案】D【解析】由三视图知几何体为一个底面半径为 2 高为 4 的半圆柱中挖
10、去一个以轴截面为底面高为 2 的四棱锥,因此该几何体的体积为 ,故选 D2132483V8 【答案】B【解析】【知识点】线性规划【试题解析】作可行域:精选高中模拟试卷第 10 页,共 21 页由题知:所以故答案为:B9 【答案】C【解析】试题分析:由题意得,根据集合之间的关系可知: 和 是正确的,故选 C.,ab0考点:集合间的关系.10【答案】D【解析】解:设球的半径为 R,则圆柱、圆锥的底面半径也为 R,高为 2R,则球的体积 V 球 =圆柱的体积 V 圆柱 =2R3圆锥的体积 V 圆锥 =故圆柱、圆锥、球的体积的比为 2R3: : =3:1:2故选 D精选高中模拟试卷第 11 页,共 2
11、1 页【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键11【答案】C【解析】试题分析:设椭圆的长半轴长为 ,双曲线的实半轴长为 ,焦距为 , , ,且不妨设1a2acmPF1n2,由 , 得 , ,又 , 由余弦定理可知:nm122nm11nos2, , ,设双曲线的离心率为,则 ,解c24134c432c 432e)(得 .故答案选 C26e考点:椭圆的简单性质【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由 为公共点,可把焦半径P、 的长
12、度用椭圆的半长轴以及双曲线的半实轴 来表示,接着用余弦定理表示1PF2 21,a,成为一个关于 以及的齐次式,等式两边同时除以 ,即可求得离心率.圆锥曲线问cos21,a2c题在选择填空中以考查定义和几何性质为主.12【答案】B【解析】解:抛物线 y2=4x 的准线 l:x=1|AF|=3,点 A 到准线 l:x= 1 的距离为 31+x A=3x A=2,y A=2 ,AOF 的面积为 = 故选:B【点评】本题考查抛物线的定义,考查三角形的面积的计算,确定 A 的坐标是解题的关键二、填空题13【答案】 4 精选高中模拟试卷第 12 页,共 21 页【解析】解:双曲线 的渐近线方程为 y= x
13、,又已知一条渐近线方程为 y=x, =2,m=4 ,故答案为 4【点评】本题考查双曲线的标准方程,以及双曲线的简单性质的应用,求得渐近线方程为 y= x,是解题的关键14【答案】【解析】试题分析:由 ,得 ,2 24+3a104fxfxbx, 22()4()3104axbxx即 ,比较系数得 ,解得 或222aba 210,7ab,则 .1,35考点:函数的性质及其应用.【方法点晴】本题主要考查了函数的性质及其应用,其中解答中涉及到函数解析式的化简与运算,求解解析式中的代入法的应用和多项式相等问题等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,试题有一定难度,属
14、于中档试题,本题的解答中化简 的解析式是解答的关()faxb键.15【答案】 【解析】解:f(x)=sin 2x+ sinxcosx= + sin2x=sin(2x )+ 又 x , ,2x , ,sin(2x ) ,1,sin(2x ) + 1, 精选高中模拟试卷第 13 页,共 21 页即 f(x)1 , 故 f(x)在区间 , 上的最大值为 故答案为: 【点评】本题考查二倍角的正弦与余弦,考查辅助角公式,着重考查正弦函数的单调性与最值,属于中档题16【答案】 4【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三
15、角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 ab及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边2ba化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式 .11sin,(),24abcbCahrR17【答案】 【解析】解:AD 取最小时即 ADBC 时,根据题意建立如图的平面直角坐标系,根据题意,设 A(0,y),C(2x,0),B (x,0)(其中 x0),则 =( 2x,y), =
16、(x, y),ABC 的面积为 , =18,精选高中模拟试卷第 14 页,共 21 页 = cos =9,2x 2+y2=9,ADBC,S= = xy=3 ,由 得:x= ,故答案为: 【点评】本题考查了三角形的面积公式、利用平面向量来解三角形的知识18【答案】【解析】由框图的算法功能可知,输出的数为三个数的方差,则 。三、解答题19【答案】 【解析】解:()f(x)是奇函数, f ( x)= f(x), = = ,比较系数得:c=c ,c=0,精选高中模拟试卷第 15 页,共 21 页f(x)= =x+ ;()f(x)=x+ ,f (x)=1 ,当 x2,+ )时,1 0,函数 f(x)在2
17、,+)上单调递增,f(x) min=f(2)= 【点评】本题考查了函数的奇偶性问题,考查了函数的单调性、最值问题,是一道中档题20【答案】(1)证明见解析;(2) 23【解析】试题分析:(1)可先证 , 从而得到 平面 ,再证 , 可得BAPADBPADCFEDB平面 ,由 ,可证明平面 平面 ;(2)由 ,取 的中点 ,连接CDEF/CEFG,可得 即为异面直线 与 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1GA试题解析:(2)因为 ,取 的中点 ,连接 ,所以 , ,又 ,PADBG,FA/GCD12F/ABCD,所以 , ,从而四边形 为平行四边形,所以 ,得;同时,1
18、BC/FBG因为 , ,所以 ,故折起的角度 .PD3精选高中模拟试卷第 16 页,共 21 页考点:点、线、面之间的位置关系的判定与性质21【答案】 【解析】解:(1)函数 y=f(x)的定义域为2,1,由2 3x11 得:x , ,故函数 y=f(3x1)的定义域为 , ;(2)函数 f( 2x+5)的定义域为 1,4,x 1,4,2x+53,13,故函数 f(x)的定义域为:3,1322【答案】 【解析】解:(1)由等差数列通项公式可知:a n=2+(n 1)2=2n,当 n=1 时,2b 1=a1=2,b 4=a8=16,3设等比数列b n的公比为 q,则 ,4q=2,5 6(2)由(
19、1)可知:log 2bn+1=n7 9精选高中模拟试卷第 17 页,共 21 页 ,cn的前 n 项和 Sn,S n= 12【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法” 求数列的前 n 项和,考查计算能力,属于中档题23【答案】【解析】【分析】(I)设圆心 C(a,a),半径为 r,利用|AC|=|BC|=r,建立方程,从而可求圆 C 的方程;(II)方法一:利用向量的数量积公式,求得POQ=120 ,计算圆心到直线 l:kxy+1=0 的距离,即可求得实数 k 的值;方法二:设 P(x 1,y 1),Q(x 2,y 2),直线方程代入圆的方程,利用韦达定理及 =x
20、1x2+y1y2=,即可求得 k 的值;(III)方法一:设圆心 O 到直线 l,l 1 的距离分别为 d,d 1,求得 ,根据垂径定理和勾股定理得到,再利用基本不等式,可求四边形 PMQN 面积的最大值;方法二:当直线 l 的斜率 k=0 时,则 l1 的斜率不存在,可求面积 S;当直线 l 的斜率 k0 时,设,则 ,代入消元得(1+k 2)x 2+2kx3=0,求得|PQ|,|MN| ,再利用基本不等式,可求四边形 PMQN 面积的最大值【解答】解:(I)设圆心 C(a,a),半径为 r因为圆经过点 A(2,0), B(0,2),所以|AC|=|BC|=r,所以解得 a=0,r=2,(2
21、 分)所以圆 C 的方程是 x2+y2=4(4 分)(II)方法一:因为 ,(6 分)所以 ,POQ=120,(7 分)所以圆心到直线 l:kxy+1=0 的距离 d=1,(8 分)又 ,所以 k=0(9 分)方法二:设 P(x 1,y 1),Q(x 2,y 2),因为 ,代入消元得(1+k 2)x 2+2kx3=0 (6 分)精选高中模拟试卷第 18 页,共 21 页由题意得: (7 分)因为 =x1x2+y1y2=2,又 ,所以 x1x2+y1y2= ,( 8 分)化简得:5k 23+3(k 2+1)=0 ,所以 k2=0,即 k=0(9 分)(III)方法一:设圆心 O 到直线 l,l
22、1 的距离分别为 d,d 1,四边形 PMQN 的面积为 S因为直线 l,l 1 都经过点(0,1),且 ll 1,根据勾股定理,有 ,(10 分)又根据垂径定理和勾股定理得到, ,(11 分)而 ,即(13 分)当且仅当 d1=d 时,等号成立,所以 S 的最大值为 7(14 分)方法二:设四边形 PMQN 的面积为 S当直线 l 的斜率 k=0 时,则 l1 的斜率不存在,此时 (10 分)当直线 l 的斜率 k0 时,设则 ,代入消元得(1+k 2)x 2+2kx3=0所以精选高中模拟试卷第 19 页,共 21 页同理得到 (11 分)= (12 分)因为 ,所以 ,(13 分)当且仅当
23、 k=1 时,等号成立,所以 S 的最大值为 7(14 分)24【答案】 【解析】(1)解:设点 E(t ,t),B(0,1),A(2t,2t+1),点 A 在椭圆 C 上, ,整理得:6t 2+4t=0,解得 t= 或 t=0(舍去),E( , ),A( , ),直线 AB 的方程为:x+2y+2=0;(2)证明:设 P(x 0,y 0),则 ,直线 AP 方程为:y+ = (x+ ),联立直线 AP 与直线 y=x 的方程,解得:x M= ,精选高中模拟试卷第 20 页,共 21 页直线 BP 的方程为:y+1= ,联立直线 BP 与直线 y=x 的方程,解得:x N= ,OMON= |x
24、M| |xN|=2| | |= | |= | |= | |= 设直线 MB 的方程为:y=kx1(其中 k= = ),联立 ,整理得:(1+2k 2)x 24kx=0 ,x Q= ,y Q= ,k AN= = =1 ,k AQ= =1 ,要证 A、Q、N 三点共线,只需证 kAN=kAQ,即 3xN+4=2k+2,将 k= 代入,即证:x MxN= ,由的证明过程可知:|x M|xN|= ,而 xM与 xN同号,x MxN= ,精选高中模拟试卷第 21 页,共 21 页即 A、Q、N 三点共线【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值、三点共线等问题,考查运算求解能力,注意解题方法的积累,属于中档题