1、精选高中模拟试卷第 1 页,共 17 页鹤城区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如图,已知平面 = , 是直线 上的两点, 是平面 内的两点,且, , , 是平面 上的一动点,且有 ,则四棱锥 体积的最大值是( )A B C D2 已知 M 是ABC 内的一点,且 =2 ,BAC=30 ,若MBC ,MCA 和MAB 的面积分别为 ,x,y,则 + 的最小值是( )A20 B18 C16 D93 已知奇函数 是 上的增函数,且 ,则 的取值范围是( )()fx1,1(3)(0ftftftA、 B、 C、 D、163tt243tt
2、62134 已知点 M 的球坐标为(1, , ),则它的直角坐标为( )A(1, , ) B( , , ) C( , , ) D( , , )5 若 fx是定义在 ,上的偶函数, 1212,0,xx,有 210fxf,则( )A 213ff B 3ffC 3 D 3216 阅读如右图所示的程序框图,若输入 ,则输出的 值是( )0.45ak(A) 3 ( B ) 4 (C) 5 (D ) 67 如果对定义在 上的函数 ,对任意 ,均有 成立,则称R)(xfnm 0)()(mnffnff函数 为“ 函数”.给出下列函数:)(xfH精选高中模拟试卷第 2 页,共 17 页 ; ; ;()ln25x
3、f34)(3xxf )cos(in2)(xxf其中函数是“ 函数”的个数为( )0,|xHA1 B2 C 3 D 4【命题意图】本题考查学生的知识迁移能力,对函数的单调性定义能从不同角度来刻画,对于较复杂函数也要有利用导数研究函数单调性的能力,由于是给定信息题,因此本题灵活性强,难度大8 边长为 2 的正方形 ABCD 的定点都在同一球面上,球心到平面 ABCD 的距离为 1,则此球的表面积为( )A3 B5 C12 D209 函数 f(x)=ax 2+bx 与 f(x)=log x(ab 0,|a|b|)在同一直角坐标系中的图象可能是( )A B C D10用反证法证明某命题时,对结论:“自
4、然数 a,b,c 中恰有一个偶数”正确的反设为( )Aa,b,c 中至少有两个偶数Ba, b,c 中至少有两个偶数或都是奇数Ca, b,c 都是奇数Da,b,c 都是偶数11某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )精选高中模拟试卷第 3 页,共 17 页A. B483C. D16320312如图,棱长为的正方体 中, 是侧面对角线1AC,EF上一1,BCAD点,若 1BEDF是菱形,则其在底面 上投影的四边形面积( )A B C. D2342324二、填空题13如图,在矩形 中, ,CA, 在 上,若 ,3BEE则 的长=_D14给出下列命题:(1)命题 p
5、:;菱形的对角线互相垂直平分,命题 q:菱形的对角线相等;则 pq 是假命题(2)命题“若 x24x+3=0,则 x=3”的逆否命题为真命题(3)“ 1x3” 是“x 24x+30” 的必要不充分条件(4)若命题 p:xR,x 2+4x+50,则p: 其中叙述正确的是 (填上所有正确命题的序号)15设 p:实数 x 满足不等式 x24ax+3a20(a0),q:实数 x 满足不等式 x2x60,已知p 是q 的必要非充分条件,则实数 a 的取值范围是 16 已知关于 的不等式 在 上恒成立,则实数 的取值范围是_17设 为单位向量,若 为平面内的某个向量,则 =| | ;若 与 平行,则 =|
6、 | ;若与 平行且| |=1,则 = 上述命题中,假命题个数是 精选高中模拟试卷第 4 页,共 17 页18设所有方程可以写成(x1)sin (y2)cos =1( 0,2 )的直线 l 组成的集合记为 L,则下列说法正确的是 ;直线 l 的倾斜角为 ;存在定点 A,使得对任意 lL 都有点 A 到直线 l 的距离为定值;存在定圆 C,使得对任意 lL 都有直线 l 与圆 C 相交;任意 l1L,必存在唯一 l2L,使得 l1l2;任意 l1L,必存在唯一 l2L,使得 l1l2三、解答题19(本小题满分 12 分)已知函数 .2()xfeab(1)当 时,讨论函数 在区间 上零点的个数;0
7、,()fx(0,)(2)证明:当 , 时, .1,120某公司对新研发的一种产品进行合理定价,且销量与单价具有相关关系,将该产品按事先拟定的价格进行试销,得到如下数据:单价 x(单位:元) 8 8.2 8.4 8.6 8.8 9销量 y(单位:万件) 90 84 83 80 75 68(1)现有三条 y 对 x 的回归直线方程: =10x+170; =20x+250; =15x+210 ;根据所学的统计学知识,选择一条合理的回归直线,并说明理由(2)预计在今后的销售中,销量与单价服从(1)中选出的回归直线方程,且该产品的成本是每件 5 元,为使公司获得最大利润,该产品的单价应定多少元?(利润=
8、销售收入成本)精选高中模拟试卷第 5 页,共 17 页21已知函数 f(x)= 的定义域为 A,集合 B 是不等式 x2(2a+1)x+a 2+a0 的解集() 求 A,B;() 若 AB=B,求实数 a 的取值范围22直三棱柱 ABCA 1B1C1 中,AA 1=AB=AC=1,E,F 分别是 CC1、BC 的中点,AEA1B1,D 为棱 A1B1上的点(1)证明:DFAE;(2)是否存在一点 D,使得平面 DEF 与平面 ABC 所成锐二面角的余弦值为 ?若存在,说明点 D 的位置,若不存在,说明理由精选高中模拟试卷第 6 页,共 17 页23已知命题 p:“存在实数 a,使直线 x+ay
9、2=0 与圆 x2+y2=1 有公共点”,命题 q:“ 存在实数 a,使点(a,1)在椭圆 内部”,若命题“p 且q”是真命题,求实数 a 的取值范围24十八届四中全会明确提出“以法治手段推进生态文明建设”,为响应号召,某市红星路小区的环保人士向该市政府部门提议“在全市范围内禁放烟花、炮竹”为此,红星路小区的环保人士对该小区年龄在15,75)的市民进行问卷调查,随机抽查了 50 人,并将调查情况进行整理后制成下表:年龄(岁) 15,25)25,35)35,45)45,55)55,65)65,75)频数 6 10 12 12 5 5赞成人数 3 6 10 6 4 3(1)请估计红星路小区年龄在1
10、5,75)的市民对“禁放烟花、炮竹”的赞成率和被调查者的年龄平均值;(2)若从年龄在55,65)、 65,75)的被调查者中各随机选取两人进行追踪调查,记被选 4 人中不赞成“禁放烟花、炮竹”的人数为 ,求随机变量 的分布列和数学期望精选高中模拟试卷第 7 页,共 17 页鹤城区外国语学校 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】A【解析】【知识点】空间几何体的表面积与体积【试题解析】由题知: 是直角三角形,又 ,所以 。因为 ,所以 PB=2PA。作 于 M,则 。令 AM=t,则所以 即为四棱锥的高,又底面为直角梯形,所以故答案为:A2 【答案
11、】B【解析】解:由已知得 =bccosBAC=2 bc=4,故 SABC =x+y+ = bcsinA=1x+y= ,而 + =2( + ) (x+y )=2(5+ + ) 2(5+2 )=18,故选 B【点评】本题主要考查了基本不等式在最值问题中的应用,向量的数量积的运算要注意灵活利用 y=ax+ 的形式3 【答案】A【解析】精选高中模拟试卷第 8 页,共 17 页考点:函数的性质。4 【答案】B【解析】解:设点 M 的直角坐标为(x,y,z),点 M 的球坐标为(1, , ),x=sin cos = ,y=sin sin = ,z=cos =M 的直角坐标为( , , )故选:B【点评】假
12、设 P(x,y,z)为空间内一点,则点 P 也可用这样三个有次序的数 r, 来确定,其中 r 为原点 O 与点 P 间的距离, 为有向线段 OP 与 z 轴正向的夹角, 为从正 z 轴来看自 x 轴按逆时针方向转到 OM所转过的角,这里 M 为点 P 在 xOy 面上的投影这样的三个数 r, 叫做点 P 的球面坐标,显然,这里r, 的变化范围为 r0,+),0 ,2, 0,5 【答案】D6 【答案】 D.【解析】该程序框图计算的是数列前 项和,其中数列通项为n12nan最小值为 5 时满足1113522nS 90.45S,由程序框图可得 值是 6 故选 D0.4k7 【答案】 B精选高中模拟试
13、卷第 9 页,共 17 页第8 【答案】C【解析】解:正方形的边长为 2,正方形的对角线长为 =2 ,球心到平面 ABCD 的距离为 1,球的半径 R= = ,则此球的表面积为 S=4R2=12故选:C【点评】此题考查了球的体积和表面积,求出球的半径是解本题的关键9 【答案】 D【解析】解:A、由图得 f(x)=ax 2+bx 的对称轴 x= 0,则 ,不符合对数的底数范围,A 不正确;B、由图得 f(x)=ax 2+bx 的对称轴 x= 0,则 ,不符合对数的底数范围, B 不正确;C、由 f(x)=ax 2+bx=0 得:x=0 或 x= ,由图得 ,则 ,所以 f(x)=log x 在定
14、义域上是增函数,C 不正确;D、由 f(x)=ax 2+bx=0 得:x=0 或 x= ,由图得 ,则 ,所以 f(x)=log x 在定义域上是减函数,D 正确【点评】本题考查二次函数的图象和对数函数的图象,考查试图能力10【答案】B精选高中模拟试卷第 10 页,共 17 页【解析】解:结论:“自然数 a,b,c 中恰有一个偶数”可得题设为:a,b,c 中恰有一个偶数反设的内容是 假设 a,b,c 中至少有两个偶数或都是奇数故选 B【点评】此题考查了反证法的定义,反证法在数学中经常运用,当论题从正面不容易或不能得到证明时,就需要运用反证法,此即所谓“正难则反“11【答案】【解析】选 D.根据
15、三视图可知,该几何体是一个棱长为 2 的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积 V2 3 221 ,故选 D.1320312【答案】B【解析】试题分析:在棱长为的正方体 中, ,设 ,则 ,1DABC1BCADFx221x解得 ,即菱形 的边长为 ,则 在底面 上的投影四边形是底边24x1EF2341EABCD为 ,高为的平行四边形,其面积为 ,故选 B.33考点:平面图形的投影及其作法.二、填空题13【答案】212【解析】在 RtABC 中,BC3,AB ,所以BAC 60.3因为 BEAC, AB ,所以 AE ,在EAD 中,EAD30,AD
16、 3,由余弦定理知,332ED2AE 2AD 22AEAD cosEAD 92 3 ,故 ED .34 32 32 214 21214【答案】 (4) 【解析】解:(1)命题 p:菱形的对角线互相垂直平分,为真命题命题 q:菱形的对角线相等为假命题;则 pq 是真命题,故(1)错误,(2)命题“若 x24x+3=0,则 x=3 或 x=1”,即原命题为假命题,则命题的逆否命题为假命题,故(2)错误,精选高中模拟试卷第 11 页,共 17 页(3)由 x24x+30 得 1x3,则“1x3”是“x 24x+3 0”的充要条件,故(3)错误,(4)若命题 p:xR,x 2+4x+50,则p: 正确
17、,故答案为:(4)【点评】本题主要考查命题的真假判断,涉及复合命题的真假关系,四种命题,充分条件和必要条件以及含有量词的命题的否定,知识点较多,属于中档题15【答案】 【解析】解:x 24ax+3a20 (a0),( xa)( x3a)0,则 3axa,(a 0),由 x2x60 得2x 3,p 是q 的必要非充分条件,q 是 p 的必要非充分条件,即 ,即 a0,故答案为:16【答案】【解析】因为 在 上恒成立,所以 ,解得答案:17【答案】 3 【解析】解:对于,向量是既有大小又有方向的量, =| | 的模相同,但方向不一定相同,是假命题;对于,若 与 平行时, 与 方向有两种情况,一是同
18、向,二是反向,反向时 =| | , 是假命题;精选高中模拟试卷第 12 页,共 17 页对于,若 与 平行且| |=1 时, 与 方向有两种情况,一是同向,二是反向,反向时 = ,是假命题;综上,上述命题中,假命题的个数是 3故答案为:3【点评】本题考查了平面向量的概念以及应用的问题,解题时应把握向量的基本概念是什么,是基础题目18【答案】 【解析】解:对于:倾斜角范围与 的范围不一致,故 错误;对于:(x1)sin (y2)cos =1,( 0,2),可以认为是圆(x1) 2+(y2) 2=1 的切线系,故 正确;对于:存在定圆 C,使得任意 lL,都有直线 l 与圆 C 相交,如圆 C:(
19、x1 ) 2+(y2) 2=100,故正确;对于:任意 l1L,必存在唯一 l2L,使得 l1l 2,作图知正确;对于:任意意 l1L,必存在两条 l2L,使得 l1l 2,画图知错误故答案为:【点评】本题考查命题真假的判断,是中档题,解题时要注意直线方程、圆、三角函数、数形结合思想等知识点的合理运用三、解答题19【答案】(1)当 时,有个公共点,当 时,有个公共点,当 时,有个公2(0,)4ea24ea2(,)4ea共点;(2)证明见解析.【解析】试题分析:(1)零点的个数就是对应方程根的个数,分离变量可得 ,构造函数 ,利用 求2xea2()xeh()h出单调性可知 在 的最小值 ,根据原
20、函数的单调性可讨论得零点个数;(2)构造函数()hx0,)()4eh,利用导数可判断 的单调性和极值情况,可证明 .12()1xex()1fx试题解析:精选高中模拟试卷第 13 页,共 17 页当 时,有 0 个公共点;2(,)4ea当 ,有 1 个公共点;当 有 2 个公共点.2(,)4ea(2)证明:设 ,则 ,2(1xhe()21xhe令 ,则 ,mxxm因为 ,所以,当 时, ; 在 上是减函数,1,ln0()m,ln2)当 时, , 在 上是增函数,(ln2)()0x()2,1)精选高中模拟试卷第 14 页,共 17 页考点:1.函数的极值;2.函数的单调性与导数的关系;3.不等式;
21、4.函数的零点.【方法点睛】本题主要考查函数的极值,函数的单调性与导数的关系,不等式,函数的零点.有关零点问题一类题型是直接求零点,另一类是确定零点的个数.确定函数零点的常用方法:(1)解方程判定法,若方程易求解时用此法;(2)零点存在的判定定理法,常常要结合函数的性质,导数等知识;(3)数形结合法.在研究函数零点,方程的根及图象交点的问题时,当从正面求解难以入手,可以转化为某一个易入手的等价问题求解,如求解含绝对值,分式,三角式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 请考生在第 22、23、24 三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号
22、.20【答案】 【解析】(1) = (8+8.2+8.4+8.6+8.8+9)=8.5, = (90+84+83+80+75+68)=80;( , )在回归直线上,选择 =20x+250;(2)利润 w=(x5)(20x+250)= 20x 2+350x1250= 20(x8.75) 2+281.25,当 x=8.75 元时,利润 W 最大为 281.25(万元),当单价定 8.75 元时,利润最大 281.25(万元)21【答案】 【解析】解:() ,化为(x2)(x+1)0,解得 x2 或 x1, 函数 f(x)= 的定义域 A=( ,1)(2, +);由不等式 x2( 2a+1)x+a
23、2+a 0 化为(x a)(xa 1)0,又 a+1a,xa+1 或 xa,不等式 x2(2a+1)x+a 2+a 0 的解集 B=(,a)(a+1,+);()AB=B,A B 精选高中模拟试卷第 15 页,共 17 页 ,解得1a 1实数 a 的取值范围 1,1 22【答案】【解析】(1)证明:AE A1B1,A 1B1AB,AEAB,又AA 1AB,AA 1AE=A,AB面 A1ACC1,又AC面 A1ACC1,ABAC,以 A 为原点建立如图所示的空间直角坐标系 Axyz,则有 A(0,0,0),E(0, 1, ),F ( , ,0),A 1(0,0,1),B 1(1,0,1),设 D(
24、x,y,z), 且 ,即(x,y,z 1)=(1,0,0),则 D(,0,1),所以 =( , ,1), =(0,1, ), = =0,所以 DFAE; (2)结论:存在一点 D,使得平面 DEF 与平面 ABC 所成锐二面角的余弦值为 理由如下:设面 DEF 的法向量为 =(x,y,z),则 , =( , , ), =( ,1), ,即 ,令 z=2(1),则 =(3,1+2,2(1)由题可知面 ABC 的法向量 =(0,0,1),平面 DEF 与平面 ABC 所成锐二面角的余弦值为 ,|cos , |= = ,即 = ,解得 或 (舍),所以当 D 为 A1B1中点时满足要求精选高中模拟试
25、卷第 16 页,共 17 页【点评】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题23【答案】 【解析】解:直线 x+ay2=0 与圆 x2+y2=1 有公共点 1a21,即 a1 或 a1,命题 p 为真命题时,a 1 或 a1;点(a,1)在椭圆 内部, ,命题 q 为真命题时,2a 2,由复合命题真值表知:若命题“p 且q”是真命题,则命题 p,q 都是真命题即 p 真 q 假,则 a2 或 a2故所求 a 的取值范围为(,22 ,+)24【答案】【解析】(1)解:赞成率为 ,被调查者的平均年龄为 200.12+300.2+400.24+500.24+600.1+700.1=43(2)解:由题意知 的可能取值为 0,1,2,3,精选高中模拟试卷第 17 页,共 17 页, 的分布列为: 0 1 2 3P 【点评】本题考查相互独立事件概率、离散型随机变量的分布列及数学期望等基础知识,考查数据处理能力,考查化归与转化思想,是中档题