收藏 分享(赏)

数学中的美及其运用.doc

上传人:精品资料 文档编号:9416801 上传时间:2019-08-06 格式:DOC 页数:23 大小:389.38KB
下载 相关 举报
数学中的美及其运用.doc_第1页
第1页 / 共23页
数学中的美及其运用.doc_第2页
第2页 / 共23页
数学中的美及其运用.doc_第3页
第3页 / 共23页
数学中的美及其运用.doc_第4页
第4页 / 共23页
数学中的美及其运用.doc_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、分类号 G247 单位代码 11080 密 级 学 号 0201130238 本科毕业论文(设计)题 目 数学中的美学及其运用作 者 张宏伟院 (系) 信息工程学院数学系专业班级 数学与应用数学2013级(2)班学 号 0201130238指导教师 梁晓茹答辩日期 年 月 日西安文理学院毕业论文(设计)诚信责任书本人郑重声明:所呈交的毕业论文(设计) ,是本人在导师的指导下独立进行研究所取得的成果。毕业论文(设计)中凡引用他人已经发表或未发表的成果、数据、观点等,均已明确注明出处。尽我所知,除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经公开发表或撰 写 过 的 研 究 成 果

2、。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人毕业论文(设计)与资料若有不实,愿意承担一切相关的法律责任。论 文 作 者 签 名 : 2017 年 5 月 3 日西安文理学院本科毕业论文(设计)I数学中的美学及其运用摘要:本文通过资料分析法, 文献研究法, 归纳总结法, 实例验证法等方法,通过在了解数学美的基础上,阅读相关参考书、期刊、从图书馆查阅相关资料,研究了数学的简洁美,统一美,奇异美,抽象美,无穷美,黄金分割美等美;并研究了生活中的数学美和教学中的数学美。关键词:数学美; 生活美; 教学美 。论文题目IIAesthetics in Mathematics and

3、 Its ApplicationAbstract:Based on the data analysis, literature research, sum up method, example method and other methods, through the understanding on the basis of mathematical beauty, read reference books, periodicals, consult the relevant information from the library, studied the concise mathemat

4、ical beauty, beauty, strange beauty, abstract beauty, infinite beauty, golden beauty; And the mathematical beauty in life is studied.Keywords:maths of beauty; Life beauty ; beauty of teaching。西安文理学院本科毕业论文(设计)III目 录摘 要 IABSTRACT II1 引言 .I2 探寻数学中的美 .12.1 简洁美 22.2 符号美 22.3 抽象美 32.4 奇异美 32.5 数学统一性的美 42.

5、6 数学中的无穷美 52.7 对称美,不对称美 52.8 黄金分割美 62.9 曲面曲线在造型时比平面和直线美 73 数学中的应用 .83.1 数学美在生活中的运用 93.2 数学美在教学方面的运用 93.3 如何更好的将数学美运用到教学和生活中 .104 结语 .11参考文献 12致谢 .12西安文理学院本科毕业论文(设计)I引言:数学是上帝用来书写宇宙的文字 伽利略数学是每个人必须学习的学科,人们通常说数学是枯燥乏味的。其实不然,数学是一门既美又真的科学,发现数学之美,可以为数学研究和数学教学提供一条切实可行的捷径。数学蕴涵着丰富的美,我们必须在研究和教学实践中,不断地寻找数学美。论文题目

6、12 探寻数学中的美数学当中存在着很多美的体现,而我们通常在数学的学习中忽略它们的存在。数学就像是一个犹抱琵琶半遮面的女子,它的神秘让人忍不住想要去揭开它的面纱,古往今来多少数学家为了研究数学,了解数学的奥秘而夜以继日的努力着。当你研究出一道晦涩难懂的题目,证明出一个真理时,你会有一种心旷神怡的感觉,我想这也许就是数学所带给我们美的感受吧。 2.1 数学概念的简洁美简洁美是数学概念的美的代表,数学中最精炼,最概括的莫过于数学的概念。简洁的数学理论可以让人感受到美的存在。比如我们学过的角平分线的概念:“从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线” 。还

7、有“两点确定一条直线”,短短的一句话,去包含了复杂的定义,简练严谨,内涵丰富,让学生感受到了数学定理的简洁之美,其实我们学过的很多定理,公式它们都是经过无数的数学家们不断的研究,不断的发现以最简洁的形式出现在我们的面前。欧拉的公式: 可以说V-E+F=2,是“简洁美”的代表.多面体有很多,没有人能说清楚.但它们的顶点数 V、棱数E、面数 F,都符合欧拉给出的这个公式.一个如此简单的公式,却代表了很多种qu 多面体的共同特性。爱因斯坦伟大的科学家数学家,他用简洁的表达式E=mc2 揭示了自然界中质能关系,这个公式产生了核爆炸,美丽的蘑菇云。数学以其简单但却丰富的形式表达我们所存在的客观世界,数学

8、的简单不是我们通常所说的简单,它应该称之为简洁。所以说简洁形象的数学概念能增强人们的思维能力,使思维集中于主要研究环节。其实在我们的学习生活中我们做证明题就要求我们的证明过程要简洁,计算出的结果要求化简,分母有理化都是为了求得简洁。这这些通常都可以给我们美的感觉。曾今有位数学家说过:“数学世界中,简单性和优雅性是压倒一切的” 。简洁美是真与善相互结合的光辉,简洁的概念可以让学生们方便记忆和运用,特别是在学生分析问题、计算和逻辑论证方面体现得更加突出,简洁美表现了客观规律的特征,在简洁美中我们可以常常了解事物的本质,也可以常常抓住真理;简洁美是数学内容与其简单化形式的统一,是人类“思维的经济化”

9、在数学上的反映,在平常的学习生活中,如果在解题过程中我们的答案比较混乱,越往后推导越难以理解,我们就会怀疑“可能出错了” ;但是如果结果简单,有序性强 ,我们就相信有更大的正确性,由此可见无论是数学概念,公式和法则的广西安文理学院本科毕业论文(设计)2泛适用性,还是数量的逻辑统一性。无不以他所持有的精炼的数学语言,严密的逻辑体系,抽象的字母符号向我们展示出数学简洁美的魅力。简洁可以让我们看到本质,看到真与善,看到创造,从而也看到美。 2. 2 数学的符号美符号常常比发明他们的数学家更能推应 F克莱茵数学的世界是一个符号的世界。数学思想的传播在很大程度上是依靠数学的符号来完成的。数学的发展符号起

10、了至关重要的作用。人们了解了符号就了解了符号的抽象与约束,可以集中思想在主要的方面,这在很大的增加的了人们的思维能力。假如数和运算不是用符号来表示的,那么数学可能是杂乱无章的,数学的发展是怎样是无法描述的。几乎在数学中每一种符号语言都支撑者一个数学的分支。数学符号是数学的奠基石。但是数学符号的进化是一个十分漫长的过程。在数学学习中,我们可以将数学表示符号的海洋,也可以将符号比喻成一个个鲜活的生命。数学符号是最简洁的,表达的内容却很多,他可以看成数学科学抽象化程度的高度体现,也是数学美的表现。因此这些符号表达的算式,简单却包含了很多言语无法表达的意义。我们学习生活中通常可以碰到许多有意思的符号,

11、他们往往在我们的学习过程中可以给我们带来很大的作用和方便,现在就让我们一起来了解一下我们学过的数学当中的一些符号。几何符号: 代数符号: 集合符号: 符号 意义 无穷大ln(x) 自然对数log(x) 常用对数lim f(x) (x- ?) 求极限论文题目3m n m 与 n互质这些符号有最简单的形式却展现了最完美的意义。我们相信随着社会的进步,数学也在不断的完善,人们的审美观念也在不断的变化,数学符号将不断的得以完善。2.3 数学的抽象美提到数学的抽象美,很多人会不懂,在人们的传统观念当中,抽象不应该是出现在美术当中吗,一幅幅抽象的图片总能让人的心灵得到净化。得到解脱,那么数学中的抽象是什么

12、呢?,我们举以前小学数学的书里面讲的例子:一只公鸡一张嘴,两只眼睛两条腿,咯咯咯咯叫不停两只公鸡两张嘴,四只眼睛四条腿,咯咯咯咯叫不停三只公鸡三张嘴,六只眼睛六条腿,咯咯咯咯叫不停我们可以统一描述成:N 只公鸡 N 张嘴,2N 只眼睛 2N 条腿,咯咯咯咯叫不停这个就叫做抽象。我们的传统观念认为抽象离我们很远,其实抽象就在我们的身边。在数学的的学习和研究过程中,抽象分析是最常用的一种思维方式,因为我们数学中很多的概念和公式都是通过抽象分析来研究而出的。抽象是数学美内在的表现,因为数学的抽象可以让人置于脱开周围事物纷扰的“纯洁”的气氛中,有时候这种气氛有会让现实的经验很迷茫;但他们所表现的都是正

13、确的。如:抽象定义域的问题,通常而言定义域是让一个函数有意义的集合,而我们在判断这个函数是否有意义的时候,往往是根据他所对应的关系所决定的,那么我们来看第一题目:1、由于 的定义域为 注意你给出题目的写法是不标准的,定义域是() 1,5(一个集合,而不是不等式) ,即 f 这个法则所要求的作用对象必须落在 这1,5个区间内,所求 这个函数的定义域,是要求我们求 x 的范围,但是这个(5)函数的法则的作用对象变成了 这个整体,所以必须要求 这个整体(5) ( 5)落在 的区间内,所以需要解1,5 155 得 410 2、同理:由于 x 的范围是 ,所以 也就是法则 f 的作03 112,用对象的

14、范围必须要求在-1.2之间,即 f(x)的定义域为-1,2,题目以抽的形式展现了定义域的集合。我相信对每个初学者来说晦涩难懂,但只要你坐下来细细想想,却好像有没有什么不妥之处。再比如:举一个很间的例子,我们通常都喜欢喝奶茶,有句广告语说:奶茶一年的销量可绕地球一圈,那么我们现假设有这么长的奶茶盒所练成的绳子,他的长度是地球的西安文理学院本科毕业论文(设计)4周长。现在如果把奶茶盒在接长 4 米后,绕着赤道一周悬在空中,我们可以得到:在赤道的任何地方,绳子都处处高 0.64 米!那么这是为什么呢。现在就让我们就一起走进这个问题。设地球半径为 r,那么奶茶盒的长则为 2r。当奶茶盒长为 2r+4

15、时,绳子所围圆周的半径则为:.=+42=42=0.64那么奶茶可以围成一个与地球相距(即绳子围成的圆圈半径与地球半径只差)0.64 米的大圆圈。这个事实无法想象,无论如何是想不通的,但事实就是这样,地球半径那么大,而奶茶盒仅仅接长 4 米,居然处处离地球 0.64 米以上。严谨的数学计算告诉我们这是正确的,可谁又能亲手去试验一下呢?这便是数学抽象的美。在数学中所处理的问题,有些是脱离了具体事物内容的。比如“N ”表示自然数,他可以是 N 个人,N 个房子或 N 个球如果单说 N 他不能具体的表示任何东西,分不到底是 1 还是 10。傻傻分不清楚,这就是数学的抽象之美,2.4 数学的奇异美没有一

16、个极美的东西不是在匀称中有着某种奇异 培根著名数学家徐利治教授说:“奇异是一种美,奇异到极致更是一种美” 。奇异常常与数学的反例在一起,比如为了探究函数的定义与连续的关系,出现了著名的狄利克雷函数:( ) =1, 为 有理数0, 为 无理数 这个函数在实轴上处处有定义,但在实轴上却处处不连续。在微积分的最早研究中,主要是研究连续函数,数学家们通过反例 , 在 R 上连续,=|x R但在 处不可导,数学家们得出了连续却未必可导的结论。后来一些数学家x=0们认为连续函数至少在某些点处可以微分,但威尔斯特拉斯却在 1860 年找到了一个处处连续又处处不可微的函数,这个奇异的反例的发现,大大的推动了数

17、学分析的发展,后来就出现了黎曼函数:( ) =1, =(0,为 互 质 的整数 )0,为 无理数 论文题目5这便是一个带有奇异的新发现,产生了深远的影响。奇异性通常伴随着数学方法的出现。例如: 证, cos4cos2+sin4sin2=1, cos4cos2+sin4sin4=1这个问题看似很复杂,如果我们改变思维用代数变换,那么他的证明就很简单,证明:设 , , ),则原式变化为2=x sin2= , ( 0, 1(1)2+(1)21=1则 x2(1-y)+y(1-x)2=y(1-y)所以 ( x-y) 2=0=y由此可以得到cos4cos2+sin4sin4=1通过上述例子我们可以发现数学

18、中有存在很多的奇异,他们通常以奇异的方式出现,给人一种空洞的感觉,但他却极大的鼓励了人们去发现和研究其中的谜题。数学的奇异中有着丰富的奥妙和魅力,奇异中也蕴含着道理与规律,她好似一个闭月羞花的少女。让人为之赞美,为之陶醉。2.5 数学统一性的美统一性的美是数学结构美的重要标志,欧几里德在他的著作中几何原本把空间的性质统一为点,线,面,体几个抽象概念和五条公设。恩格斯也曾说过,数学中一些看来不同的概念,定理,法则,在一一个特定的情况下都可以处在一个统一体中。比如圆的幂定理中就包含了切线长定理,割线定理,切割线定理,相交玄定理。统一性是数学的一个重要方向。统一性也是数学最根本的美学。说道数学的统一

19、性的美我们据不得不说克莱因,克莱因倔强的探索着几何学理论的统一。他首先指出:“几何学尽管本质上是一个整体,可是,由于最近期间所取得的飞速发展,却被分割成为许多几乎互不相干的分科,其中每一分科几乎都是独立地、继续地发展着。于是,公开发表旨在建立几何学的这样一种内在联系的各种考虑,就显得更加必要了。克莱因对数学统一性的研究,使数学朝着更好更快的方向始终前进着。克莱因的几何学群论思想,以简单明了的方式把相当多的几何学统一了起来。他给已有的多种几何学提供了一个系统的分类方法,并提示了许多可供研究的问题。它引导以后的几何学家的研究工作达 50 年之久,对几何学的发展产生了深刻的影响。其实,数学中统一性地

20、发展经历了漫长的过程,由最初的希西安文理学院本科毕业论文(设计)6尔伯特的公理化运动到伯克霍夫用“格”来统一代数系统经历了 30 年左右。后来,公理化运动被布尔巴基学所承认,他认为数学可以统一为一个整体。这些都为数学的统一做出了巨大的贡献。现在我们在学习的过程中感受到数学的统一性,在很大程度上都是前人为我们做出的巨大贡献所达成的,我们在学习的过程中应该保持一颗的心。尽情,无所保留的来认知数学统一美所带给我们的和谐。其实,数学中统一性有很多的表现,我们通常需所学的知识都会有一个大的框架来约束。我们学过的函数,求导,切线的计算等,其实都是微积分的表现。当然我们知道牛顿-莱布尼兹公式 。就是这个(

21、) =( ) ( )公式,它强大的将微分,不定积分和定积分统一在这个公式中,我想这是数学的强大之处吧。2. 6 数学中的无穷美无穷大的问题是一个让人着迷的有趣问题,人类因为了解了无穷,我们的思想才会飞向遥远的宇宙。探索那神秘的黑洞。徜徉在银河那无穷的边界。记我在一本书上偶然间看到过这样一个问题:如何来定义一个无穷的边界。起初我还在想,无论什么东西他总有一个尽头,总有一个边界吧,那时天真无邪的我一直是这样认为的。但是随着年龄的增长,随着知识越来越多的累计,我发现我的这种观点好像是错误的。因为给无穷来定一个边界好像本身就是一个天真的问题,因为你如果给无穷定了一个边界,那么边界外面的会是什么呢?边界

22、外面好像也是无穷的存在吧。就像你以房子的一扇门来区分房子的里面和外面。那么这个所谓的房子外面也可能是另一个参照物的里面,这里面好像也涉及到了哲学的问题。其实到现在我都还不是很懂这样的一问题。我想这也是数学的无穷衬托出来数学的奇异美吧。亚里士多德曾经说过,无穷就像宇宙没有尽头,你永远无法走到他的边界。数学中的无穷造就了很多的相悖论。那么希尔伯特旅馆悖论将为我们展现数学的无穷之美。假如一个旅馆有无限个房间,并且每个房间都住了客人。一天来了一个新客人,旅馆老板说:“虽然我们已经客满,但你还是能住进来的”|。我可以让 1 号房间的客人搬到 2 号房间,2 号房间的客人搬到 3 号房间n 号房间的客人搬

23、到 n+1 号房间,那么这样你就可以住进 1 号房间了” 。 ”又过了一天,来了无限个客人,老板又说:“不用担心,大家仍然都能住进来。我让1 号房间的客人搬到 2 号房间,2 号搬到 4 号,3 号搬到 6 号,n 号搬到 2n 号,然后你们排好队,每个人依次住进奇数号的房间吧。 ”这就是德国大数学家大卫希尔伯特提出的著名悖论。每个学过集合论的学生都知道它虽然看似不正论文题目7确,但它确是完全符合逻辑的,只不过超出了我们普通的认知罢了。所以说数学中的无穷美可以让我们可以让我们体验前所未有的头脑风暴。2.7 数学中对称美,不对称美美和对称是紧密相连的。我们的生活中处处都存在对称,有图形的轴对称,

24、中心对称和镜像对称,还有函数的周期, ,再比如与时空坐标无关的对称。数学,有很多的自然对称美。例如: 关于 y 轴对称,共轭因子对称,多项式方=2程的虚根成对出现;他们的对称无不给人以美的感受。数学的对称美可以分为两种:其一是数(式)的对称性美,主要是在它的它的的结构上,比如,加法的交换律 乘法的交换律 ,mm+n=n+m, mn=nm与 n 的位置具有对称关系,是存在变化的,变化以后与原来的位置相比给人一种整齐的美感,显示了它的神秘感、奇妙感。我们学到的行列式在也会成轴对称或者中心对称,他们会在直观上给人以美的感受。比如 1 0 10 1 01 0 1当然说道对称,人们肯定忘不了对称的几何之

25、美,下面就让我们一起欣赏对称带给我们的视觉冲击。西安文理学院本科毕业论文(设计)8数学的对称美已成为人们研究解决问题的重要思想方法,它的作用越来越显得重要。2.8 数学中的黄金分割美黄金分割点是是最能让人赏心悦目的美点,约 1700 年以前,古希腊著名的学着数学家欧多克索斯最早提出了黄金分割,并开创了黄金分割的先河。他认为所谓的黄金分割,黄金分割是指将整体一分为二,较大部分与整体部分的比值等于较小部分与较大部分的比值,其比值约为 0.618。设一条线段 AB 的长度为 a,C 点在靠近 B 点的黄金分割点上,且 AC 为 b,则 a 比 b 就是黄金数=2=( ) =22+142=5422=5

26、2=( 5+1) 2= 5212其实计算黄金分割最简单的方法,是计算斐波那契数列1,1,2,3,5,8,13,21,.后二数之比 2/3,3/5,4/8,8/13,13/21,.近似值的。黄金分割在是每一个数学家都非常喜欢的一向研究,有些数学家把黄金分割比喻为“金法” ,在他们的眼中黄金分割比金子还要珍贵。再到后来一位欧洲的数学家,甚至亲切的把称它为“各种算法中最可宝贵的算法“。这种有趣的算法在古代印度被人们称之为“三率法“或“三数法则“,也就是现在我们常说的比例方法。它的经历直到 19 世纪黄金分割才被大多数人所知道。黄金分割数有很多有趣的表现,人类对它所带来的的实际应用也很多。最著名就是黄

27、金分割法也可以称之为 0.618 法,是由美国人首先提出的,知道上世纪 70 年代才在在中国推广。论文题目9黄金分割有着很高的美学价值.在造型艺术中,采用黄金分割的比例能够引起人们审美的感觉。我们最常见的建筑物中某些线段的比就应用了 0618 这个比例,我们经常看电视我们很容易发现,主持人员并不是站在舞台的正中央,通常是偏在台上一侧,是以站在舞台长度的黄金分割点的位置最好看大气,这样做的话支持人的声音传播的最远也最好。大自然中植物的生长也是黄金分割,比如如果从一棵嫩枝的顶端向下看,就会发现叶子是按照黄金分割的规律来生长着。在很多科学实验中,会用到优选法,其实也是一种黄金分割的方法,用到这种方法

28、它可以让我们更准确的安排较少的试验次数。由于它在建筑、文艺、工农业生产和科学实验存在的关系,人们才亲切的称它为“黄金分割“意思是像黄金一样重要和美丽。黄金分割的比例性有着无限的美学价值。我们在生活中应用时一般取 0.618 ,就比如 在应用时取到 3.14。最好看的人体结构是:肚脐到脚底的距离/头顶到脚底的距离=0.618. 最迷人的脸型是:眉毛到脖子的距离/头顶到脖子的距离=0.618 . 所以黄金分割与我们的生活息息相关.2. 9 曲面曲线在造型时比平面和直线美在数学的学习中,我们经常碰到曲线和曲面,那么什么是曲线?什么又是曲面呢?曲线是动点运动时,方向连续变化所成的线。也可以想象成弯曲的

29、波状线。任何一根连续的线条都称为曲线,包括直线、折线、线段、圆弧等。曲面则是是一条动线,在给定的条件下,在空间连续运动所形成的轨迹。曲面曲线在我西安文理学院本科毕业论文(设计)10们的生活中有着很多的应用,我们平常所看的电视,和不离身的手机中很多都应用了曲面曲线可以给人视觉带来美观的特点。因为曲面曲线他可以给人一种整体很流畅很光滑的感觉,让人在欣赏的时候很舒服。远比直线和直面给人带来僵硬的感觉要好的很多。所以曲面曲线在我们的生活中随处可见。当然曲面曲线在直观的建筑或造型上更能让人感觉到美的体验那么就让我们一起走进曲面曲线,来一起欣赏几组图片感受曲面曲线所带我们的视觉冲击。通过观察图,我们很容易

30、发现曲面曲线做成的图可以给人一种立体美的感受,他在我们的生活中涉及面之广,是无法言语的。3 数学中的应用3.1 数学美在生活中的运用什么地方有数学,什么地方就有美” 。数学满足人们的生活需要,也满足人们的审美需求。在我们这个世界上,有很多很多行业的人都在无时无刻的不使用着 数学。比如公司财会、保险精算、量化金融、土木工程、石油勘探、矿业冶金、机械电子、自动化控制、计算机编程等等。数学是基本的生产工具。上街买菜用数学,管理酒店想核算经营成本的时候得用,操作车床用数学,绘制图论文题目11纸也用得着。 数字是我们生活中用到做多的。中国的诗中也有很多的数字,卓文君用首 怨郎诗一 别 之后,二地相 悬

31、。虽说 是三四 月, 谁 又知五六年。七弦琴无心 弹 ,八行 书 无可 传 ,九 连环 从中折断,十里 长 亭望眼欲穿。百思想,千系念,万般无奈把郎怨。万 语 千言道不完,百无聊 赖 十凭 栏 。重九登高看孤雁,八月仲秋月 圆 人不 圆 。七月半秉 烛烧 香 问苍 天 。六月伏天从 摇 扇我心寒 。五月石榴似水,偏遇 阵阵 冷雨 浇 花端。四月枇杷未黄,我欲 对镜 心意乱。忽匆匆,三月桃花随水 转 ,飘 零零,二月 风 筝 线 儿断。噫,郎呀郎,巴不得下一世,你 为 女来我做男 。换来了与司马相如的爱情,两人终得一是伴侣。数字一到十,表现了卓文君的思念,又从十到一体现了内心的无奈。不得不说是完

32、美。随着社会的发展,人们生活水平的提高,数学涉及到各个领域我们到超市买菜会用到我们学的数学来计算,我们通常开车到要去的地方我们会计算两地的最短距离,以用最少的时间来到达目的地,我们在建造房屋是,房屋的拐角通常都是三角形,因为三角形有良好的稳固性。数学已经渗透到我们的生活当中,我们的生活已经离不开数学。这也是数学应用广泛性的体现。数学的力量是巨大的。3.2 数学美在教学方面的运用数学是美的,在教学中应用到数学美,可以让数学的学习更加有趣,它可以使原本冷淡的数学变得活力,生机勃发。他可以让学生心灵感到美存在,在我实习的过程中,我带了一节课椭圆,在教学过程中,为了让学生们更加能准确的了解椭圆我发动了

33、学生们动手的乐趣,在前一天我会让学生们预习,然后给学生们布置第二天学习所需要的材料,第二天和学生们一起动手来画椭圆,在这过程中,他们兴趣盎然,有很高的积极性,课堂的氛围也很活跃,使学生们在快乐的过程当中学到知识,数学之美充满了整个世界。在我们的学习生活中,老师板书的美,会在很大一定程度上决定学生的学习情趣,对于这一点,我很有感同身受,在高中是我遇到过一个老师,每次他的板书可以给人一种清新的感觉,上他的课,你会很少的打瞌睡,因为看看黑板上那整齐的字,我总会不自觉的清醒起来,心情也像在草原上奔跑,心旷神怡。记得那是在学习圆锥曲线的时候,刚开始接触的时候,它总给人一种无限的神秘感,班上很少人能学的懂

34、,老师给我们播放了很多圆锥曲线的图,让我们先以直观的感觉来感受,然后他会用作图工具问我们展示圆锥曲线是怎样形成的,现在回想起来,那些图是多么的美妙,那些曲线是多么的动人。我想这也是数学美的表现吧。有时候常常想,数学恐怕是这个世界上唯一不会欺骗背叛我的事物了他像是一个全天下最好的恋人,时常死皮赖脸、反反复复地纠缠、折磨你,却西安文理学院本科毕业论文(设计)12又让你在即将陷入崩溃的时候向你展现出它惊人的美丽,美到让你觉得之前那些煎熬都是值得的。3.3 如何更好的将数学美运用到教学和生活中。如果只在单纯知性和机械的层次上理解教育和知识的概念的话,那么美不是知识也是不可教的。因此如何欣赏和体会的问题

35、不能用数学本身的方式定义、公理、推论、定理的方式来回答,反过来应该问你自己究竟是怎么理解数学美和想怎样去欣赏它。这就激起一种主体的自觉,自动地去要求对数学的理论形式的极大了解,并在这一过程中对数学的本质有了直观的洞见。这样美就成为了主体的自身之物,而在上面这个问题中,美还是一种外在物。单纯作为外在物的美是不存在的。记得高考刚毕业是,在闲暇的时候我会看一些期刊,那天刚好是早上起来我随手拿起以本书,在书上他等了一个男孩在图书馆休息的时候自己证明并研究了数学史上一个很难证明的问题,我被这报道所吸引,所以在高考填志愿是,我毫不犹豫的填报了数学的志愿,我想我已经开始喜欢上数学了吧,在大学这四年数学的学习

36、工作中,我无时无刻不在提醒着自己,要不忘初心,永远以最真诚的心来学习数学。现在我个人的数学造诣依然无从谈起,但是这样一种兴趣依然让我感到数学是一种美。 在最近的几年,教育部实行新课标,在新的数学教学过程中,教师要在已有的资源上,充分的发现和理解数学之美,使学生在学习过程中感受到数学美的存在。让每一个数学课堂,每一节数学课都不再枯燥乏味,让每一个学生都喜欢上学数学。让热爱数学成为一种潮流,每个人都能用自己学到的数学知识来解决自己所遇到的问题。数学源于生活,启于生活,应用于生活,数学与生活是无法剥离的,教师在课堂上联系生活实,在作业的设计上也要贴近生活,让学生熟知、亲近、现实的生活数学,走进学生视

37、野,使之产生亲近感,变得具体而生动,诱发学生动手,动口又动脑,想办法探求解决问题的过,增强其学习的主动性,发展求异思维,让我们的生活充满数学,让数学应用于每一个人。4 结束语人类有无数种语言,但人们都可以理解,数学的美也是如此。我们盼望这有一天,我们会深处在数学的不可想象之中。那里到处是鲜花,到处是自然美的表现,我们可以随时的听到数学的天使在那歌唱数学的美妙。 论文题目13参考文献1翟卫芳.数学教学中的美学应用.J.考试周刊.2013 第 66 期2王浩成.黄金分割发现数学之美.J.学周刊.2016 第 20 期3董香梅.美学方法在中学数学教学中的应用.J.学园.2013 第 31 期4王育鸽

38、.数学美得诠释及其功能.J.新课程学习(中).2011 第 6期5田鹏.数学的对称美及其作用.J.南阳师范学院报.2004 第 3 期6张春涛.数学美在传统文化中的体现及其教育价值.J.青年与社会(中外教育研究).2009 第 9 期7王艳.谈数学美及其教育功能.J.教育实践与研究.2004 第 8 期8常秀怀.浅谈美学在数学教学中的应用.M.新课标(教师版).西安文理学院本科毕业论文(设计)142009 第 4 期9王福来.大学数学中美学的研究与应用.J.考试周刊.2010 第 55 期10孙岚.曲线符号在产品设计中的运用.J.合肥学院学报.2007 卷号1711徐永恒.大学指南.J.课堂内外杂志论文题目15致 谢时间过的真快,不知不觉间大学已接近了尾声。我的毕业论文也已结稿,在这我要首先感谢我的家人给予我的支持和鼓励,最辛苦的莫过于我的指导老师梁晓茹,她用自己渊博的知识在我完成论文的过程当中给了我很大的帮助,她总是不辞劳苦,在这我要对她说一声谢谢!

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报