收藏 分享(赏)

算法分析与设计复习2009.ppt

上传人:kpmy5893 文档编号:9175746 上传时间:2019-07-26 格式:PPT 页数:23 大小:135.50KB
下载 相关 举报
算法分析与设计复习2009.ppt_第1页
第1页 / 共23页
算法分析与设计复习2009.ppt_第2页
第2页 / 共23页
算法分析与设计复习2009.ppt_第3页
第3页 / 共23页
算法分析与设计复习2009.ppt_第4页
第4页 / 共23页
算法分析与设计复习2009.ppt_第5页
第5页 / 共23页
点击查看更多>>
资源描述

1、算法分析与设计,总复习,考试范围:第一章至第六章 考试题型:化简题、简述题、算法题 分数分布: 填空题每空2分,共30分 判断题每个1分,共10分 算法设计题2题,共30分 程序设计题2题,共30分要求写程序时一定要先写出思路做为注释,并且在程序的关键地方也要有注释 考试方式:闭卷,第一章 算法概述,第二章 递归与分治策略,第三章 动态规划,第四章 贪心算法,第五章 回朔法,第六章 分支限界法,算法分析与设计,第一章 算法概述,理解算法的概念 掌握算法的计算复杂性概念 掌握算法渐近复杂性的数学表述,第一章 算法概述,理解算法的概念 算法是指解决问题的一种方法或一个过程。 算法应满足的性质:有穷

2、性 、确定性 、能行性、有0个或多个输入项,至少有一个输出项。,第一章 算法概述,掌握算法的计算复杂性概念 算法的复杂性:算法执行所需的时间和空间的数量。 与问题的规模、算法的输入数据及算法本身有关。 最好情况、最坏情况、平均情况,第一章 算法概述,掌握算法渐近复杂性的数学表述 大O表示法 (算法运行时间的上限 ) 大表示法 (算法运行时间的下限) 表示法,常见的多项式阶有:,O(1),O(logn),O(n),O(nlogn),O(n2),O(n3),O(2n),O(n!),O(nn),常见的指数阶有:,第一章 算法概述,1、 渐近表达式 2、下面程序段的时间复杂度是for (i=0; in

3、; i+)for (j=0; jn; j+)Aij=0;,3、有如下递归过程:void reverse (int n) printf(“%d”,n%10);if(n/10!=0)reverse(n/10); 功能是什么? 4、化简递归式子,第二章 递归与分治策略,理解递归的概念 掌握设计有效算法的分治策略 通过范例学习分治策略设计技巧 二分搜索技术 找最大和最小元素 合并排序 快速排序 练习,要求解问题具有的性质:最优子结构和子问题独立性质 求解问题的步骤: 将要求解的较大规模的问题分割成k个更小规模的子问题。 对这k个子问题分别求解。如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归

4、的进行下去,直到问题规模足够小,很容易求出其解为止。 将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上逐步求出原来问题的解。,第二章 递归与分治策略,练习 伪造硬币问题 求最大最小值问题 有重复元素的排列问题 半数集问题 整数因子分解问题,第三章 动态规划,理解动态规划算法的概念 掌握动态规划算法的基本要素 最优子结构性质 重叠子问题性质 掌握设计动态规划算法的步骤 动态规划算法与分治策略和贪心算法的异同 通过范例学习动态规划策略设计技巧及练习,第三章 动态规划,动态规划算法与分治策略和贪心算法的异同 动态规划算法与贪心算法比较的异同是:都是将问题的求解过程化为多步决策.区别是:

5、贪心法每采用一次贪心策略便做出唯一决策,求解过程只产生一个决策序列;求解过程为自顶向下,不一定得到最优解;动态规划的求解过程产生多个决策序列, 下一步的选择总是依赖上一步的结果.求解过程多为自底向上.总能得到最优解。 动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题;但是经分解得到的子问题往往不是互相独立的。不同子问题的数目常常只有多项式量级。在用分治法求解时,有些子问题被重复计算了许多次;如果能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,就可以避免大量重复计算,从而得到多项式时间算法。因此,相同点是都具有最优子结构的性质。,要求解问题具有的性质:最优子结构

6、和子问题重叠性 求解问题的步骤: 分析最优解的结构. 给出计算局部最优解值的递归关系.(递归的定义最优值) 自底向上计算局部最优解的值.(计算最优值) 根据最优解的值构造最优解.,第三章 动态规划,通过范例学习动态规划策略设计技巧及练习 最短路问题 0-1背包问题 矩阵乘法链 最长单调递增子序列 二维0-1背包问题 最大k乘积问题,第四章 贪心算法,理解贪心算法的概念 掌握贪心算法的基本要素 最优子结构性质 贪心选择性质 通过应用范例学习贪心设计策略 练习,第四章 贪心算法,通过应用范例学习贪心设计策略 活动安排问题 最优装载 背包问题 多机调度问题 哈夫曼编码 单源最短路径问题 最小生成树问

7、题,第四章 贪心算法,练习 找零钱问题 汽车加油问题 数列极差问题 删数问题 最优分解问题,第五章 回朔法,理解回溯法的深度优先搜索策略 掌握用回溯法解题的算法框架 通过应用范例学习回溯法的设计策略 练习,步骤: 针对所给问题,定义问题的解空间 确定解空间结构. 以深度优先方式搜索解空间.(约束条件和限界函数),第五章 回朔法,通过应用范例学习回溯法的设计策略 子集和问题 装载问题 批处理作业调度 n后问题 最大团问题 图的m着色问题 练习 最小重量机器设计问题 工作分配问题 部落卫队问题,第六章 分支限界法,理解分支限界法的剪枝搜索策略 掌握分支限界法的算法框架 队列式分支限界法 优先队列式分支限界法 分支限界法与回溯法的异同 通过应用范例学习分支限界法 0-1背包 装载问题 布线问题,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报