1、精选高中模拟试卷第 1 页,共 17 页石屏县高中 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 某大学数学系共有本科生 1000 人,其中一、二、三、四年级的人数比为 4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为 200 的样本,则应抽取三年级的学生人数为( )A80 B40 C60 D202 下列正方体或四面体中, 、 、 、 分别是所在棱的中点,这四个点不共面的一个图形是PQRS( )3 若直线 y=kxk 交抛物线 y2=4x 于 A,B 两点,且线段 AB 中点到 y 轴的距离为 3,则|AB|= ( )A12 B10 C8
2、 D64 已知 2a=3b=m,ab0 且 a,ab ,b 成等差数列,则 m=( )A B C D65 若复数满足 (为虚数单位),则复数的虚部为( )71izA1 B C D1 i6 设全集 U=MN=1,2,3,4,5,M UN=2,4 ,则 N=( )A1 ,2,3 B1,3,5 C1,4,5 D2 ,3,47 函数 f(x)=x 2x2,x5,5,在定义域内任取一点 x0,使 f(x 0)0 的概率是( )A B C D8 有下列说法:在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适相关指数 R2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好比较两个模
3、型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好精选高中模拟试卷第 2 页,共 17 页其中正确命题的个数是( )A0 B1 C2 D39 某棵果树前 n 年的总产量 Sn与 n 之间的关系如图所示从目前记录的结果看,前 m 年的年平均产量最高,则 m 的值为( )A5 B7 C9 D1110直线 2x+y+7=0 的倾斜角为( )A锐角 B直角 C钝角 D不存在11下列命题中错误的是( )A圆柱的轴截面是过母线的截面中面积最大的一个B圆锥的轴截面是所在过顶点的截面中面积最大的一个C圆台的所有平行于底面的截面都是圆面D圆锥所有的轴截面是全等的等腰三角形12下面各组函数
4、中为相同函数的是( )Af(x)= ,g(x)=x1 Bf(x)= ,g(x)=Cf(x)=ln e x与 g(x)=e lnx Df (x) =(x1) 0与 g(x)=二、填空题13刘老师带甲、乙、丙、丁四名学生去西安参加自主招生考试,考试结束后刘老师向四名学生了解考试情况四名学生回答如下:甲说:“我们四人都没考好”乙说:“我们四人中有人考的好”丙说:“乙和丁至少有一人没考好”丁说:“我没考好”结果,四名学生中有两人说对 了,则这四名学生中的 两人说对了 精选高中模拟试卷第 3 页,共 17 页14阅读如图所示的程序框图,则输出结果 的值为 .S【命题意图】本题考查程序框图功能的识别,并且
5、与数列的前 项和相互联系,突出对逻辑判断及基本运算n能力的综合考查,难度中等.15如图,一船以每小时 20km 的速度向东航行,船在 A 处看到一个灯塔 B 在北偏东 60方向,行驶 4 小时后,船到达 C 处,看到这个灯塔在北偏东 15方向,这时船与灯塔间的距离为 km16ABC 中, ,BC=3 , ,则C= 17设双曲线 =1,F 1,F 2是其两个焦点,点 M 在双曲线上若F 1MF2=90,则 F1MF2的面积是 18在棱长为 1 的正方体 ABCDA1B1C1D1中,M 是 A1D1的中点,点 P 在侧面 BCC1B1上运动现有下列命题:精选高中模拟试卷第 4 页,共 17 页若点
6、 P 总保持 PABD1,则动点 P 的轨迹所在曲线是直线;若点 P 到点 A 的距离为 ,则动点 P 的轨迹所在曲线是圆;若 P 满足MAP=MAC 1,则动点 P 的轨迹所在曲线是椭圆;若 P 到直线 BC 与直线 C1D1的距离比为 1:2,则动点 P 的轨迹所在曲线是双曲线;若 P 到直线 AD 与直线 CC1的距离相等,则动点 P 的轨迹所在曲线是抛物丝其中真命题是 (写出所有真命题的序号)三、解答题19如图在长方形 ABCD 中, 是 CD 的中点,M 是线段 AB 上的点, (1)若 M 是 AB 的中点,求证: 与 共线;(2)在线段 AB 上是否存在点 M,使得 与 垂直?若
7、不存在请说明理由,若存在请求出 M 点的位置;(3)若动点 P 在长方形 ABCD 上运动,试求 的最大值及取得最大值时 P 点的位置20全集 U=R,若集合 A=x|3x10,B=x|2x 7,(1)求 AB,( UA)( UB); (2)若集合 C=x|xa,AC,求 a 的取值范围精选高中模拟试卷第 5 页,共 17 页21(本小题满分 10 分)选修 45:不等式选讲已知函数 , ()fxa()R()若当 时, 恒成立,求实数 的取值;02fxa()当 时,求证: 3()()afxfxf22已知椭圆 : ( ),点 在椭圆 上,且椭圆 的离心率为 C21xyab0a3(1,)2C12(
8、1)求椭圆 的方程;(2)过椭圆 的右焦点 的直线与椭圆 交于 , 两点, 为椭圆 的右顶点,直线 , 分别FCPQAPAQ交直线: 于 、 两点,求证: 4xMNMFN23【海安县 2018 届高三上学期第一次学业质量测试】已知函数 ,其中 ,2xfxaeaR是自然对数的底数.e精选高中模拟试卷第 6 页,共 17 页(1)当 时,求曲线 在 处的切线方程;ayfx0(2)求函数 的单调减区间;fx(3)若 在 恒成立,求 的取值范围.4,0a24某种产品的广告费支出 x 与销售额 y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70(1)画出散点图;
9、(2)求线性回归方程;(3)预测当广告费支出 7(百万元)时的销售额精选高中模拟试卷第 7 页,共 17 页石屏县高中 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:要用分层抽样的方法从该系所有本科生中抽取一个容量为 200 的样本,三年级要抽取的学生是 200=40,故选:B【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果2 【答案】D【解析】考点:平面的基本公理与推论3 【答案】C【解析】解:直线 y=kxk 恒过(1,0),恰好是抛物线 y2=4x 的
10、焦点坐标,设 A(x 1,y 1) B(x 2,y 2) 抛物 y2=4x 的线准线 x=1,线段 AB 中点到 y 轴的距离为 3,x 1+x2=6,|AB|=|AF|+|BF|=x 1+x2+2=8,故选:C【点评】本题的考点是函数的最值及其几何意义,主要解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离4 【答案】C精选高中模拟试卷第 8 页,共 17 页【解析】解:2 a=3b=m,a=log 2m,b=log 3m,a,ab,b 成等差数列,2ab=a+b,ab0, + =2, =logm2, =logm3,log m2+logm3=logm6=2,解
11、得 m= 故选 C【点评】本题考查了指数与对数的运算的应用及等差数列的性质应用5 【答案】A【解析】试题分析: ,因为复数满足 ,所以 ,所以复数42731,iii71iz1,1iizizA的虚部为,故选 A. 考点:1、复数的基本概念;2、复数代数形式的乘除运算.6 【答案】B【解析】解:全集 U=MN=1,2,3,4,5 ,MC uN=2,4,集合 M,N 对应的韦恩图为所以 N=1,3,5故选 B7 【答案】C【解析】解:f(x)0x 2x201x2,f(x 0)01 x02,即 x01,2,在定义域内任取一点 x0,精选高中模拟试卷第 9 页,共 17 页x 05,5,使 f(x 0)
12、0 的概率 P= =故选 C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键8 【答案】C【解析】解:在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确相关指数 R2来刻画回归的效果,R 2值越大,说明模型的拟合效果越好,因此不正确比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确综上可知:其中正确命题的是故选:C【点评】本题考查了“残差” 的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题9 【答案】C【解析】解:若果树前 n 年的总产量 S 与 n 在图中对应 P(
13、S,n)点则前 n 年的年平均产量即为直线 OP 的斜率由图易得当 n=9 时,直线 OP 的斜率最大即前 9 年的年平均产量最高,故选 C10【答案】C【解析】【分析】设直线 2x+y+7=0 的倾斜角为 ,则 tan=2,即可判断出结论【解答】解:设直线 2x+y+7=0 的倾斜角为 ,则 tan=2,则 为钝角故选:C11【答案】 B【解析】解:对于 A,设圆柱的底面半径为 r,高为 h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积 S=ah2rh当 a=2r 时截面面积最大,即轴截面面积最大,故 A 正确精选高中模拟试卷第 10 页,共 17 页对于 B,设圆锥 SO 的
14、底面半径为 r,高为 h,过圆锥定点的截面在底面的边长为 AB=a,则 O 到 AB 的距离为 ,截面三角形 SAB 的高为 ,截面面积 S= = = 故截面的最大面积为 故 B 错误对于 C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故 C 正确对于 D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故 D 正确故选:B【点评】本题考查了旋转体的结构特征,属于中档题12【答案】D【解析】解:对于 A:f(x)=|x 1|,g(x)=x1,表达式不同,不是相同函数;对于 B:f(x)的定义域是:x|x1
15、或 x1,g(x)的定义域是xx1,定义域不同,不是相同函数;对于 C:f(x)的定义域是 R,g(x)的定义域是x|x0,定义域不同,不是相同函数;对于 D:f(x)=1,g(x)=1,定义域都是x|x1 ,是相同函数;故选:D【点评】本题考查了判断两个函数是否是同一函数问题,考查指数函数、对数函数的性质,是一道基础题二、填空题13【答案】乙 ,丙【解析】【解析】甲与乙的关系是对立事件,二人说话矛盾,必有一对一错,如果选丁正确,则丙也是对的,所以丁错误,可得丙正确,此时乙正确。故答案为:乙,丙。14【答案】 20176精选高中模拟试卷第 11 页,共 17 页【解析】根据程序框图可知,其功能
16、是求数列 的前 1008 项的和,即)12(n 5321S. 0715()531()20175 615【答案】 【解析】解:根据题意,可得出B=75 30=45,在ABC 中,根据正弦定理得: BC= = 海里,则这时船与灯塔的距离为 海里故答案为 16【答案】 【解析】解:由 ,a=BC=3,c= ,根据正弦定理 = 得:sinC= = ,又 C 为三角形的内角,且 ca,0C ,则C= 故答案为:【点评】此题考查了正弦定理,以及特殊角的三角函数值,正弦定理很好的建立了三角形的边角关系,熟练掌握正弦定理是解本题的关键,同时注意判断 C 的范围17【答案】 9 精选高中模拟试卷第 12 页,共
17、 17 页【解析】解:双曲线 =1 的 a=2,b=3,可得 c2=a2+b2=13,又|MF 1|MF2|=2a=4,|F 1F2|=2c=2 ,F 1MF2=90,在F 1AF2中,由勾股定理得:|F1F2|2=|MF1|2+|MF2|2=(|MF 1|MF2|) 2+2|MF1|MF2|,即 4c2=4a2+2|MF1|MF2|,可得|MF 1|MF2|=2b2=18,即有F 1MF2的面积 S= |MF1|MF2|sinF 1MF2= 181=9故答案为:9【点评】本题考查双曲线的简单性质,着重考查双曲线的定义与 a、b、c 之间的关系式的应用,考查三角形的面积公式,考查转化思想与运算
18、能力,属于中档题18【答案】 【解析】解:对于,BD 1面 AB1C,动点 P 的轨迹所在曲线是直线 B1C,正确;对于,满足到点 A 的距离为 的点集是球,点 P 应为平面截球体所得截痕,即轨迹所在曲线为圆,正确;对于,满足条件MAP=MAC 1 的点 P 应为以 AM 为轴,以 AC1 为母线的圆锥,平面 BB1C1C 是一个与轴 AM 平行的平面,又点 P 在 BB1C1C 所在的平面上,故 P 点轨迹所在曲线是双曲线一支,错误;对于,P 到直线 C1D1 的距离,即到点 C1的距离与到直线 BC 的距离比为 2:1,动点 P 的轨迹所在曲线是以 C1 为焦点,以直线 BC 为准线的双曲
19、线,正确;对于,如图建立空间直角坐标系,作 PEBC,EF AD,PGCC 1,连接 PF,设点 P 坐标为(x,y,0),由|PF|=|PG|,得 ,即 x2y2=1,P 点轨迹所在曲线是双曲线,错误故答案为:精选高中模拟试卷第 13 页,共 17 页【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题三、解答题19【答案】 【解析】(1)证明:如图,以 AB 所在直线为 x 轴,AD 所在直线为 y 轴建立平面直角坐标系,当 M 是 AB 的中点时,A(0,0),N (1,1),C(2,1),M(1,0),由 ,可得 与 共线;
20、(2)解:假设线段 AB 上是否存在点 M,使得 与 垂直,设 M(t,0)(0t2),则 B(2,0),D (0,1), M(t,0),由 =2(t2)1=0,解得 t= ,线段 AB 上存在点 ,使得 与 垂直;(3)解:由图看出,当 P 在线段 BC 上时, 在 上的投影最大,则 有最大值为 4【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题精选高中模拟试卷第 14 页,共 17 页20【答案】 【解析】解:(1)A=x|3 x10,B=x|2x7 ,AB=3,7 ; AB=(2,10);(C UA) (C UB)=(,3)10,
21、+);(2)集合 C=x|xa,若 AC,则 a3,即 a 的取值范围是 a|a321【答案】【解析】【解析】() 得,()2xaf2ax由题意得 ,故 ,所以 5 分204a() , , ,311 2fxfxaxa212axaa,2a 10 分ffff22【答案】() ;()证明见解析143xy【解析】试题分析: ()由题中条件要得两个等式,再由椭圆中 的等式关系可得 的值,求得椭圆的方程;cba,ba,()可设直线 的方程,联立椭圆方程,由根与系数的关系得 , ,得PQ12634my12934y直线 ,直线 ,求得点 、 坐标,利用 得 PAlAlMN0FNMF试题解析: (1)由题意得
22、解得22219,4,abc,3.a椭圆 的方程为 C2143xy精选高中模拟试卷第 15 页,共 17 页又 , ,1xmy21xy , ,则 , ,1(4,)M2(4,)N12(3,)yFMm2(3,)1yFNm121212499()yFyy 22364990 N考点:椭圆的性质;向量垂直的充要条件23【答案】(1) (2)当 时, 无单调减区间;当 时, 的单调减区间210xyafxafx是 ;当 时, 的单调减区间是 .(3)2,af ,224,e【解析】试题分析:(1)先对函数解析式进行求导,再借助导数的几何意义求出切线的斜率,运用点斜式求出切线方程;(2)先对函数的解析式进行求导,然
23、后借助导函数的值的符号与函数单调性之间的关系进行分类分析探求;(3)先不等式 进行等价转化,然后运用导数知识及分类整合的数学思想探求函数的4fx极值与最值,进而分析推证不等式的成立求出参数的取值范围。精选高中模拟试卷第 16 页,共 17 页(2) 因为 ,2 22xxfxaeae当 时, ,所以 无单调减区间.a 0xf当 即 时,列表如下:所以 的单调减区间是 .fx2,a当 即 时, ,列表如下:2a xfxe所以 的单调减区间是 .fx,2a综上,当 时, 无单调减区间;2afx当 时, 的单调减区间是 ;,当 时, 的单调减区间是 .f2a(3) .2 xxxaee当 时,由(2)可
24、得, 为 上单调增函数,afR所以 在区间 上的最大值 ,符合题意.f4,0024f当 时,由(2)可得,要使 在区间 上恒成立,x,0只需 , ,解得 .0fa22fae2ea当 时,可得 , .444f精选高中模拟试卷第 17 页,共 17 页设 ,则 ,列表如下:age1age所以 ,可得 恒成立,所以 .max14ge 4ae24a当 时,可得 ,无解.40f综上, 的取值范围是 .2,24【答案】 【解析】解:(1)(2)设回归方程为 =bx+a则 b= 5 / 5 =13805550/145552=6.5故回归方程为 =6.5x+17.5(3)当 x=7 时, =6.57+17.5=63,所以当广告费支出 7(百万元)时,销售额约为 63(百万元)【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节