收藏 分享(赏)

天祝藏族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷.doc

上传人:爱你没说的 文档编号:8966349 上传时间:2019-07-18 格式:DOC 页数:16 大小:532.50KB
下载 相关 举报
天祝藏族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷.doc_第1页
第1页 / 共16页
天祝藏族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷.doc_第2页
第2页 / 共16页
天祝藏族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷.doc_第3页
第3页 / 共16页
天祝藏族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷.doc_第4页
第4页 / 共16页
天祝藏族自治县高级中学2018-2019学年高二上学期第二次月考试卷数学测试卷.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 16 页天祝藏族自治县高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 如果一个几何体的三视图如图所示,主视图与左视图是边长为 2 的正三角形、俯视图轮廓为正方形,(单位:cm),则此几何体的表面积是( )A8cm 2 B cm2 C12 cm2 D cm22 已知定义在 上的奇函数 )(xf,满足 ,且在区间 上是增函数,则 R(4)(fxfx0,2A、 B、(5)(180ff8015)C、 D、55fff3 若命题 p:xR,x20,命题 q:x R, x,则下列说法正确的是( )A命题 pq 是假命题 B命题

2、 p(q)是真命题C命题 pq 是真命题 D命题 p(q)是假命题4 设 是奇函数,且在 内是增函数,又 ,则 的解集是( )()fx(0,)(3)0f()0xfA B |33或 |3x或C D 或 x或5 下列各组函数为同一函数的是( )Af(x)=1 ;g(x)= Bf(x)=x2;g(x)=Cf(x)=|x|;g(x)= Df (x)= ;g(x)=6 双曲线 E 与椭圆 C: 1 有相同焦点,且以 E 的一个焦点为圆心与双曲线的渐近线相切的圆的面x29y23积为 ,则 E 的方程为( )A. 1 B. 1x23y23x24y22精选高中模拟试卷第 2 页,共 16 页C. y 21 D

3、. 1x25x22y247 从 1,2,3,4,5 中任取 3 个不同的数,则取出的 3 个数可作为三角形的三边边长的概率是( )A B C D8 如图是一容量为 100 的样本的重量的频率分布直方图,则由图可估计样本重量的中位数为( )A11 B11.5 C12 D12.59 设 m、n 是两条不同的直线, , 是三个不同的平面,给出下列四个命题:若 m,n,则 mn; 若 ,m ,则 m;若 m,n,则 mn; 若 ,m ,则 m;其中正确命题的序号是( )A B C D10已知 m、n 是两条不重合的直线, 、 是三个互不重合的平面,则下列命题中 正确的是( )A若 m,n ,则 mn

4、B若 ,则 C若 m,n ,则 mnD若 m,m,则 11某公园有 P,Q,R 三只小船,P 船最多可乘 3 人,Q 船最多可乘 2 人,R 船只能乘 1 人,现有 3 个大人和 2 个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A36 种 B18 种 C27 种 D24 种12(理)已知 tan=2,则 =( )A B C D二、填空题13如图,在正方体 ABCDA1B1C1D1 中,P 为 BD1 的中点,则PAC 在该正方体各个面上的射影可能是 精选高中模拟试卷第 3 页,共 16 页14已知关于的不等式 20xab的解集为 (1,2),则关于的不等式

5、 210bxa的解集为_.15观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49照此规律,第 n 个等式为 16二面角 l内一点 P 到平面 , 和棱 l 的距离之比为 1: :2,则这个二面角的平面角是 度17设集合 ,满足2 2|7150,|0AxBxab, ,求实数 _.B18设函数 ,若用表示不超过实数 m 的最大整数,则函数的值域为 三、解答题19选修 45:不等式选讲已知 f(x)=|ax+1|(a R),不等式 f(x)3 的解集为x|2x1()求 a 的值;()若 恒成立,求 k 的取值范围精选高中模拟试卷第 4 页,共 16 页20如图

6、,四边形 ABCD 与 AABB都是边长为 a 的正方形,点 E 是 AA 的中点,AA 平面 ABCD(1)求证:AC平面 BDE;(2)求体积 VAABCD 与 VEABD 的比值21已知函数 f(x)= x2ax+(a1)lnx (a1)() 讨论函数 f(x)的单调性;() 若 a=2,数列a n满足 an+1=f(a n)(1)若首项 a1=10,证明数列a n为递增数列;(2)若首项为正整数,且数列a n为递增数列,求首项 a1 的最小值精选高中模拟试卷第 5 页,共 16 页22已知函数 f(x)=|2x+1|+|2x3|()求不等式 f(x)6 的解集;()若关于 x 的不等式

7、 f( x)log 2(a 23a)2 恒成立,求实数 a 的取值范围23在平面直角坐标系中,矩阵 M 对应的变换将平面上任意一点 P(x,y)变换为点 P(2x+y,3x)()求矩阵 M 的逆矩阵 M1;()求曲线 4x+y1=0 在矩阵 M 的变换作用后得到的曲线 C的方程24(本小题满分 12 分)已知在 中,角 所对的边分别为 且ABC, , cba.)3(sin)(sin( cbabBA()求角 的大小;() 若 , 的面积为 ,求 .2,精选高中模拟试卷第 6 页,共 16 页精选高中模拟试卷第 7 页,共 16 页天祝藏族自治县高级中学 2018-2019 学年高二上学期第二次月

8、考试卷数学(参考答案)一、选择题1 【答案】C【解析】解:由已知可得:该几何体是一个四棱锥,侧高和底面的棱长均为 2,故此几何体的表面积 S=22+4 22=12cm2,故选:C【点评】本题考查的知识点是棱柱、棱锥、棱台的体积和表面积,空间几何体的三视图,根据已知判断几何体的形状是解答的关键2 【答案】D【解析】 , , ,(4)(fxfx(8)(4)ffx(8)(fxf 的周期为 , , 0,)f825)1,(131fff又奇函数 (在区间 上是增函数, )(在区间 上是增函数,0, 2, ,故选 D.25)()fff3 【答案】 B【解析】解:xR,x20,即不等式 x20 有解,命题 p

9、 是真命题;x0 时, x 无解,命题 q 是假命题;pq 为真命题,pq 是假命题,q 是真命题,p(q)是真命题,p(q)是真命题;故选:B【点评】考查真命题,假命题的概念,以及 pq,pq,q 的真假和 p,q 真假的关系4 【答案】B【解析】试题分析:因为 为奇函数且 ,所以 ,又因为 在区间 上为增函数且fx30f30ffx0,,所以当 时, ,当 时, ,再根据奇函数图象关于原点对30f0,x,称可知:当 时, ,当 时, ,所以满足 的 的取值范3fffx围是: 或 。故选 B。,x,x考点:1.函数的奇偶性;2.函数的单调性。5 【答案】C精选高中模拟试卷第 8 页,共 16

10、页【解析】解:A、函数 f(x)的定义域为 R,函数 g(x)的定义域为x|x0,定义域不同,故不是相同函数;B、函数 f(x)的定义域为 R,g(x)的定义域为x|x2,定义域不同,故不是相同函数;C、因为 ,故两函数相同;D、函数 f(x)的定义域为x|x1 ,函数 g(x)的定义域为x|x 1 或 x1,定义域不同,故不是相同函数综上可得,C 项正确故选:C6 【答案】【解析】选 C.可设双曲线 E 的方程为 1,x2a2y2b2渐近线方程为 y x,即 bxay0,ba由题意得 E 的一个焦点坐标为( ,0),圆的半径为 1,6焦点到渐近线的距离为 1.即 1,| 6b|b2 a2又

11、a2b 26,b1,a ,5E 的方程为 y 21,故选 C.x257 【答案】A【解析】解:从 1,2,3,4,5 中任取 3 个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共 10个,取出的 3 个数可作为三角形的三边边长,根据两边之和大于第三边求得满足条件的基本事件有(2,3,4),(2,4,5),(3,4,5)共 3 个,故取出的 3 个数可作为三角形的三边边长的概率 P= 故选:A【点评】本题主要考查了古典概型的概率的求法,关键是不重不漏的列举出所有的

12、基本事件8 【答案】C精选高中模拟试卷第 9 页,共 16 页【解析】解:由题意,0.065+x 0.1=0.5,所以 x 为 2,所以由图可估计样本重量的中位数是 12故选:C9 【答案】B【解析】解:由 m、n 是两条不同的直线, , 是三个不同的平面:在中:若 m,n,则由直线与平面垂直得 mn,故正确;在中:若 , ,则 ,m,由直线垂直于平面的性质定理得 m ,故正确;在中:若 m,n,则由直线与平面垂直的性质定理得 mn,故正确;在中:若 ,m ,则 m 或 m,故 错误故选:B10【答案】C【解析】解:对于 A,若 m ,n ,则 m 与 n 相交、平行或者异面;故 A 错误;对

13、于 B,若 , ,则 与 可能相交,如墙角;故 B 错误;对于 C,若 m,n,根据线面垂直的性质定理得到 mn;故 C 正确;对于 D,若 m,m,则 与 可能相交;故 D 错误;故选 C【点评】本题考查了空间线线关系面面关系的判断;熟练的运用相关的定理是关键11【答案】 C【解析】排列、组合及简单计数问题【专题】计算题;分类讨论【分析】根据题意,分 4 种情况讨论,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 1 个大人,R 船乘 1个大 1 人,P 船乘 1 个大人和 1 个小孩共 2 人,Q 船乘 1 个大人和 1 个小孩,R 船乘 1 个大 1 人,P 船乘 2 个大人和

14、1 个小孩共 3 人,Q 船乘 1 个大人和 1 个小孩, ,P 船乘 1 个大人和 2 个小孩共 3人,Q 船乘 2 个大人,分别求出每种情况下的乘船方法,进而由分类计数原理计算可得答案【解答】解:分 4 种情况讨论,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 1 个大人, R 船乘 1 个大 1 人,有 A33=6 种情况,P 船乘 1 个大人和 1 个小孩共 2 人,Q 船乘 1 个大人和 1 个小孩,R 船乘 1 个大 1 人,有 A33A22=12 种情况,P 船乘 2 个大人和 1 个小孩共 3 人,Q 船乘 1 个大人和 1 个小孩,有 C322=6 种情况,精选高中

15、模拟试卷第 10 页,共 16 页,P 船乘 1 个大人和 2 个小孩共 3 人,Q 船乘 2 个大人,有 C31=3 种情况,则共有 6+12+6+3=27 种乘船方法,故选 C【点评】本题考查排列、组合公式与分类计数原理的应用,关键是分析得出全部的可能情况与正确运用排列、组合公式12【答案】D【解析】解:tan =2, = = = 故选 D二、填空题13【答案】 【解析】解:由所给的正方体知,PAC 在该正方体上下面上的射影是,PAC 在该正方体左右面上的射影是,PAC 在该正方体前后面上的射影是故答案为:14【答案】 ),1()2,(【解析】考点:一元二次不等式的解法.15【答案】 n+

16、(n+1 )+(n+2)+(3n2)=(2n1 ) 2 【解析】解:观察下列等式精选高中模拟试卷第 11 页,共 16 页1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49等号右边是 12,3 2,5 2,7 2第 n 个应该是(2n1) 2左边的式子的项数与右边的底数一致,每一行都是从这一个行数的数字开始相加的,照此规律,第 n 个等式为 n+(n+1)+ (n+2)+(3n2)=(2n1) 2,故答案为:n+(n+1 )+(n+2)+(3n2)=(2n1) 2【点评】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系

17、,本题是一个易错题16【答案】 75 度【解析】解:点 P 可能在二面角 l内部,也可能在外部,应区别处理当点 P 在二面角 l的内部时,如图,A、C、B、P 四点共面,ACB 为二面角的平面角,由题设条件,点 P 到 , 和棱 l 的距离之比为 1: : 2 可求ACP=30 ,BCP=45 ,ACB=75故答案为:75【点评】本题考查与二面角有关的立体几何综合题,考查分类讨论的数学思想,正确找出二面角的平面角是关键17【答案】 7,32ab【解析】精选高中模拟试卷第 12 页,共 16 页考点:一元二次不等式的解法;集合的运算.【方法点晴】本题主要考查了集合的综合运算问题,其中解答中涉及到

18、一元二次不等式的解法、集合的交集和集合的并集的运算、以及一元二次方程中韦达定理的应用,试题有一定的难度,属于中档试题,着重考查了学生分析问题和解答问题的能力,同时考查了转化与化归思想的应用,其中一元二次不等式的求解是解答的关键.18【答案】 0,1 【解析】解:= + + = + + ,0 1, , + ,当 0 时,0 , + 1,故 y=0;当 = 时, =0, + =1,故 y=1;精选高中模拟试卷第 13 页,共 16 页 1 时, 0,1 + ,故 y=1+1=0;故函数 的值域为0,1故答案为:0,1【点评】本题考查了学生的化简运算能力及分类讨论的思想应用三、解答题19【答案】 【

19、解析】解:()由|ax+1|3 得4ax2不等式 f(x)3 的解集为 x|2x1当 a0 时,不合题意;当 a0 时, ,a=2;()记 ,h(x)=|h (x )| 1 恒成立,k1【点评】本题考查绝对值不等式的解法,考查恒成立问题,将绝对值符号化去是关键,属于中档题20【答案】 【解析】(1)证明:设 BD 交 AC 于 M,连接 MEABCD 为正方形,M 为 AC 中点,又E 为 AA 的中点,ME 为AAC 的中位线,MEAC精选高中模拟试卷第 14 页,共 16 页又ME平面 BDE,AC平面 BDE,AC平面 BDE(2)解:V EABD= = = = VAABCDV AABC

20、D:V EABD=4:121【答案】 【解析】解:() , (x0),当 a=2 时,则 在(0,+)上恒成立,当 1a2 时,若 x(a1, 1),则 f(x)0,若 x(0,a1)或 x(1,+),则 f(x)0,当 a2 时,若 x(1,a1),则 f(x)0,若 x(0,1)或 x(a1,+),则 f(x)0,综上所述:当 1a2 时,函数 f(x)在区间(a1,1)上单调递减,在区间(0,a1)和(1,+ )上单调递增;当 a=2 时,函数(0,+)在(0,+)上单调递增;当 a2 时,函数 f(x)在区间(0,1)上单调递减,在区间( 0,1)和(a 1,+)上单调递增()若 a=

21、2,则 ,由()知函数 f(x)在区间(0,+)上单调递增,(1)因为 a1=10,所以 a2=f(a 1)=f(10)=30+ln10,可知 a2a 10,假设 0a ka k+1(k 1),因为函数 f(x)在区间(0,+ )上单调递增,f(a k+1)f(a k),即得 ak+2a k+10,由数学归纳法原理知,a n+1a n 对于一切正整数 n 都成立,数列a n为递增数列(2)由(1)知:当且仅当 0a 1a 2,数列a n为递增数列,f(a 1)a 1,即 (a 1 为正整数),设 (x1),则 ,精选高中模拟试卷第 15 页,共 16 页函数 g(x)在区间 上递增,由于 ,g

22、(6)=ln60,又 a1 为正整数,首项 a1 的最小值为 6【点评】本题考查导数的运用:求单调区间,同时考查函数的零点存在定理和数学归纳法的运用,考查运算能力,属于中档题选做题:本题设有(1)(2)(3)三个选考题,每题 7 分,请考生任选 2 题作答,满分 7 分如果多做,则按所做的前两题计分【选修 4-2:矩阵与变换】22【答案】 【解析】解:()原不等式等价于 或 或,解得: x2 或 x 或 1x ,不等式 f(x) 6 的解集为 x|1x2 ()不等式 f(x) 2 恒成立 +2f(x)=|2x+1|+|2x 3|恒成立+2f(x) min 恒成立,|2x+1|+|2x3|(2x

23、+1 )(2x3)|=4,f( x)的最小值为 4, +24,即 ,解得:1a0 或 3a4实数 a 的取值范围为( 1, 0)(3,4)23【答案】 【解析】解:()设点 P(x,y)在矩阵 M 对应的变换作用下所得的点为 P(x,y ),则 即 = ,精选高中模拟试卷第 16 页,共 16 页M= 又 det(M)= 3,M 1= ;()设点 A(x,y)在矩阵 M 对应的变换作用下所得的点为 A(x,y ),则 =M1 = ,即 ,代入 4x+y1=0,得 ,即变换后的曲线方程为 x+2y+1=0【点评】本题主要考查矩阵与变换等基础知识,考查运算求解能力及化归与转化思想,属于中档题24【答案】解:()由正弦定理及已知条件有 , 即 . 3223cbabcacb22分由余弦定理得: ,又 ,故 . 6 分23cos2bcaA),0(A() 的面积为 , , , 8 分BCsin134bc又由() 及 得 , 10 分 223ab,a162由 解得 或 . 12 分,ccb

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报