收藏 分享(赏)

《正态分布》教案.doc

上传人:hwpkd79526 文档编号:8927318 上传时间:2019-07-17 格式:DOC 页数:10 大小:755KB
下载 相关 举报
《正态分布》教案.doc_第1页
第1页 / 共10页
《正态分布》教案.doc_第2页
第2页 / 共10页
《正态分布》教案.doc_第3页
第3页 / 共10页
《正态分布》教案.doc_第4页
第4页 / 共10页
《正态分布》教案.doc_第5页
第5页 / 共10页
点击查看更多>>
资源描述

1、普通高中课程标准实验教科书数学 选修 2-3正态分布湖南省常德市安乡县第一中学 廖 华一、教学目标一、知识与技能1、结合正态曲线,加深对正态密度函数的理解;2、通过正态分布的图形特征,归纳正态曲线的性质二、过程与方法讲授法与引导发现法通过教师先讲,师生再共同探究的方式,让学生深刻理解相关概念,领会数形结合的数学思想方法 ,体会数学知识的形成三、情感态度与价值观通过教学中一系列的探究过程使学生体验发现的快乐,形成积极的情感,培养学生的进取意识和科学精神二、教学重点与难点重点:正态分布曲线的特点及其所表示的意义;难点:了解在实际中什么样的随机变量服从正态分布,并掌握正态分布曲线所表示的意义三、教学

2、方法讲授法与引导发现法 四、教具准备黑板,多媒体,高尔顿试验板五、教学过程设计教学环节教 学 内 容 师 生 互 动 设 计 意 图创设情境学生上台演示高尔顿板试验 创设情境,为导入新知做准备学生感悟体验,对试验的结果进行定向思考学生经过观察小球在槽中的堆积形状发现:下落的小球在槽中的分布是有规律的让学生演示试验,能提高学生的学习积极性,提高学习数学的兴趣让学生体验“正态分布曲线“的生成和发现历程建构概念1用频率分布直方图从频率角度研究小球的分布规律 将球槽编号,算出各个球槽内的小球个数,作出频率分布表 以球槽的编号为横坐标,以小球落入各个球槽内的频率与组距的比值为纵坐标,画出频率分布直方图。

3、连接各个长方形上端的中点得到频率分布折线图引导学生思考回顾,教师通过课件演示作图过程在这里引导学生回忆得到,此处的纵坐标为频率除以组距教师提出问题:这里每个长方形的面积的含义是什么?学生经过回忆,易得:长方形面积代表相应区间内数据的频率通过把与新内容有关的旧知识抽出来作为新知识的“生长点” ,为引入新知搭桥铺路,形成正迁移通过这里的思考回忆,加深对频率分布直方图的理解教学环节教 学 内 容 师 生 互 动设 计 意 图(3)随着试验次数增多,折线图就越来越接近于一条光滑的曲线从描述曲线形状的角度自然引入了正态密度函数的表达式: ,212, xex分析表达式特点:解析式中前有一个系数,后面是一个

4、以21为底数的指数形式,e幂指数为 ,2)(x解析式中含两个常数和 ,还含有两个参e数 和 ,分别指总体随机变量的平均数和标准差,可用样本平均数和标准差去估计与旧教材不同的是,该处在学生从形的角度直观认识了正态曲线之后才给出曲线对应的表达式,这样处理能更直观,学生更易理解正态曲线的来源建构概念2.继续探究:当我们去掉高尔顿板试验最下边的球槽,并沿其底部建立一个水平坐标轴,其刻度单位为球槽的宽度,用 表示落下的小球第X一次与高尔顿板底部接触时的坐标提出问题:图中阴影部分面积有什么意义?Oyxab引导学生得到:此时小球与底部接触时的坐标 是一个连续型X随机变量启发学生回忆:频率分布直方图中面积对应

5、频率,不难理解,图中阴影部分的面积,就可以看成多个矩形面积的和,也就是 落在X区间 的频率;再,(ba结合定积分的意义,阴影部分面积就是正态密度函数在该区间上的积分值,这样,概率与积分间就建立了一个等量关系这个步骤实现了由离散型随机变量到连续型随机变量的过渡通过设疑,引起学生对问题的深入思考,加深对定积分几何意义的理解直接问 落在X区间 上的概率,,(ba学生不容易反应过来,改为问面积的意义后,便于学生理解该问题教学环节教 学 内 容 师 生 互 动 设 计 意 图建构概念在前面分析的基础上,引出正态分布概念: 一般地,如果对于任何实数 ,随机变量 满足:abX,则dxPba,称 的分布为正态

6、分布,常记作X如果随机变量 服从正2,N态分布,则记作 2,N教师在前面分析的基础上引出正态分布的概念,并说明记法。 引导学生分析得,所落区间的端点能X否取值,均不影响 落在该区间内的概率以旧引新,虽概念较抽象,但这样处理学生不会觉得太突兀,易于接受新知识同时培养学生把前后知识联系起来进行思维的习惯列举实例请学生结合高尔顿板试验讨论提出的问题,并尝试归纳服从或近似服从正态分布的随机变量所具有的特征:1小球落下的位置是随机的吗?2若没有上部的小木块,小球会落在哪里?是什么影响了小球落下的位置?3前一个小球对下一个小球落下的位置有影响吗?哪个小球对结果的影响大?4你能事先确定某个小球下落时会与哪些

7、小木块发生碰撞吗?学生通过讨论,教师引导学生得出问题的结果:1它是随机的2竖直落下受众多次碰撞的影响3互不相干、不分主次4不能,具有偶然性然后归纳出特征:一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用之和,它就服从或近似服从正态分布教师列举实例分析,帮助学生更加透彻的理解“什么样的随机变量服从(或近似服从)正态分布?”是本节课的难点,采用设置问题串的方式,将复杂的问题分解成几个容易解决的问题,能有效突破难点同时采用小组讨论的形式,加强学生的合作意识,同时培养他们的辩证观通过举例,让学生体会到生活中处处有正态分布,感受到数学的实际应用深入探究引导学生结合三幅图像及高尔顿板试验,根据

8、问题归纳正态曲线的性质:(1)曲线在 轴的上方,与 轴不相交;xx(2)曲线是单峰的,图像关于直线对称;引导学生联系三幅图像,结合高尔顿板试验思考以下问题:(1)曲线在坐标平面的什么位置?曲线为什么与 x 轴不相交?(2)曲线有没有对称轴? 该环节借助计算机模拟及高尔顿板试验试验结果呈现了教学中难以呈现的课程内容,能很好地锻炼学生观察归纳的能力,体现了归纳分类、化(3)曲线在 处达峰值 ;x21(4)曲线与 轴之间的面积为 1;(3) 曲线有没有最高点?坐标是?(4)曲线与 轴围成的x面积是多少?难为易、数形结合的思想教学环节教 学 内 容 师 生 互 动 设 计 意 图深入探究教师通过计算机

9、绘出两组图像(动画) ,让学生观察:第一组:固定 的值, 取三个不同的数;第二组:固定 的值, 取三个不同的数;学生通过观察并结合参数 与 的意义可得:当 一定时,曲线随的变化而沿 平移;x当 一定时, 影响了曲线的形状即: 越小,则曲线越瘦高,表示总体分布越集中;越大,则曲线越矮胖,表示总体分布越分散针对解析式中含有两个参数,学生较难独立分析参数对曲线的影响,这里通过固定一个参数,讨论另一个参数对图象的影响,这样的处理大大降低了难度,并能很好地突出重点自我尝试例 1、下列函数是正态密度函数的是( B ) )0(,2)(.2)(xexfA都是实数 2)(.xf4)1(2.xexC2)(.xfD

10、学生通过观察解析式的结构特征可知只有B 选项符合正态密度函数解析式的特点设计这一题主要为了加强学生对正态密度函数的理解例 2、把一条正态曲线 a 沿横轴向右平移 2 个单位,得到一条新的曲线b下列说法中不正确的是( D )A. 曲线 b 仍然是正态曲线B. 曲线 a 和曲线 b 的最高点的纵坐标相同C. 以曲线 b 为概率密度曲线的总体的均值比以曲线 a 为概率密度曲线的总体的均值大 2D. 以曲线 b 为概率密度曲线的总体的方差比以曲线 a 为概率密度曲线的总体的方差大 2学生易分析知:正态曲线 经过平移仍是a正态曲线,峰值不变。而曲线的左右平移与即均值有关故 D选项的说法不正确通过该例的设

11、置,深化学生对正态曲线的特点及正态分布密度函数表达式中参数与 的理解教学环节教 学 内 容 师 生 互 动 设 计 意 图自我尝试例 3 、某校某次数学考试的成绩服从正态分布,其密度函数曲线X如下图:20 40 60 80 100y281xO 写出 的正态密度函数;X 若参加考试的共 1200 人(满分100 分) ,你能估计及格人数吗?学生通过观察图像,可知对称轴 ,60根据峰值可知 ,8代入正态曲线表达式可得: 12860, xex第二问根据图像利用对称性知及格人数占总参考人数一半通过一个贴近生活的实例,让学生体会到数学在实际问题中的应用,培养学生应用所学知识解决问题的能力,激发学习热情体

12、现了数形结合的思想引导运用判断正误: 正态密度曲线 关于)(,xy直线 对称 ()0x 正态总体 的标准差为 4 )43(N() 正态分布随机变量等于一个特定实数的概率为 0 () 若 ,)3(2X则 ()(P1 学生结合正态曲线特点可知 由正态分布记法知标准差为 2 学生结合概率的几何意义可知 结合正态曲线的对称性可得到结果 通过一组判断题,进一步加深学生对正态分布的认识(为了更好地突出本节课重点,同时更好地突破难点,考虑到本节课的课堂容量及学生的认知情况,我将 原则放在了第二课时 )3六、课后作业1. (必做题)设随机变量 服从正态分布 ,若X)92(N)1(cXP,求 的值并写出其正态密

13、度函数解析式)1(cXP2.(必做题)以学习小组(4 人)为单位,搜集某项数据资料(如某年级学生的身高、体重等) 仿照课本的方法,研究该数据是否服从(或近似服从)正态分布?如果是,请估计参数 的值3.(选做题)在高尔顿板试验中,为什么落在中间球槽的小球最多?七、板书设计正 态 分 布课堂小结1. 知识归纳: 正态密度曲线正态分布的意义 正态密度曲线特点 正态分布的实例参数对正态曲线的影响2. 思想方法: 数形结合思想教师引导学生从知识内容和思想方法两方面进行课堂小结最后教师说明:正态分布广泛存在于自然现象、生产和生活实际之中,我们研究它主要还是希望它能服务于我们的生活,那么它在实际中究竟有着怎

14、样的妙用呢?我们下节课继续学习!通过小结使学生对本节课的知识结构有一个清晰的认识,同时使学生自己内化知识,查漏补缺,使学生在认识上达到一个新的高度一、 正态密度函数 ),(,21)(2)(, xex二、 正态分布若对任何实数 ,随机变量 满baX足 dxaXP)()(,则称 的分布为正态分布常记作若随机变量 服从正态分布,)(2N则记为 )(2X正态曲线的特点:(1)曲线在 轴上方,与 轴不相交;xx(2)曲线是单峰的,关于直线 对称;(3)曲线在 处达到峰值 ;x21(4)曲线与 轴之间的面积为 1;(5)当 一定时,曲线随着 的变化而沿 轴平移;x(6)当 一定时,曲线的形状由 确定 越小

15、,曲线越“瘦高” , 表示总体分布越集中; 越大,曲线越“矮胖” , 表示总体分布越分散八、教学后记通过对本堂课的钻研和设计,我谈两点体会:1数学知识间存在着内在的本质联系,本设计充分注意了新旧知识间的内在联系,这样有助于学生理解记忆前后所学知识,并将其融会贯通,从而更好地加以运用2 “数学是思维的体操” ,要提高学生的数学思维能力,需要通过学生自身动口、动手、动脑,以及教师的正确引导因此,在课堂设计中,我把试验交给学生做,让他们感悟函数模型的生成,并时刻注重引导和调动学生的主观能动性,创造条件给足时间让学生“讲、演、练” ,充分而有效的发挥学生的主体作用,让学生在课堂上享有相当的主动权,拥有积极思考和参与教学活动的时间和空间,让学生在相互讨论和启发中活动,在活动中学习,在活动中思维,在活动发展,教师应是活动的引导者,组织者,参与者!

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报