1、第4章 相关分析,本章教学要求: (1)变量相关的概念 (2)相关系数的概念和计算 (3)相关系数与回归系数、样本拟合优度的关系以及相关系数的显著性检验 (4)偏相关系数与复相关系数的概念,概念:相关指两个或两个以上变量间的非确定性关系。,4.1相关的概念,类型:,完全相关:变量间存在函数关系。 高度相关(强相关):变量间近似存在函数关系. 弱相关:变量间有关系但不明显。 零相关:变量间不存在任何关系。,按强度分 :,高度相关,弱相关,零相关,按形式分:线性相关非线性相关,按变量个数分:简单相关:指两个变量间相关多重相关(复相关和偏相关):指三个或三个以上变量间的相关。,按符号分:正相关负相关
2、零相关,非线性相关,负相关,相关系数表示两个变量之间的线性相关程度。定义为:,以样本方差和样本协方差估计X、Y的方差和协方差, 样本相关系数为:,相关系数的取值范围:(1)当两个变量严格服从线性关系时,= 1。(2)当两个变量不存在线性关系时, = 0。(3) 相关系数的一般取值范围是 -1,1。当Cov (xt , yt) 0时,则 0 (正相关); 当Cov (xt , yt) 0时,则 0 (负相关);若Cov (xt , yt) = 0,则 = 0 (零相关)。,r = 0.99,r = 0.64,不同相关系数值对应的观测值分布情况图示,相关分析与回归分析的关系,区别: 1、回归分析强
3、调变量间的因果关系,相关分析不关心因果关系。 2、相关分析中两变量关系具有对称性,但回归分析中两变量的关系具有指向性。 3 、相关分析是对变量间不确定性依赖关系密切程度的度量,回归分析研究一个因变量对一个或多个解释变量的依赖关系,其目的在于通过后者的已知或设定值,去估计和预测前者的均值.,联系:1 、样本相关系数与回归系数的关系,2 、相关系数与决定系数的关系,R2 =r2xy,样本相关系数的显著性检验,被固定变量数目的多少称为偏相关系数的阶数。,样本偏相关系数的计算思路:,偏相关系数:在研究y与多个变量x1,x2, ,xk 之间的相关关系时,只衡量y与xi之间的相关关系,而清除其他变量对他们的影响(或者保持其它变量不变),这种相关叫做偏相关。用以衡量其相关程度的指标叫做偏相关系数。,4.2 偏相关系数,以一阶偏相关系数为例,它与相应的简单相关系数的关系为:,复相关系数:在研究y与多个变量x1,x2, ,xk之间的相关关系时,度量其中一个变量y与其它所有变量相关程度的指标。,4.3 复相关系数,样本复相关系数的计算思路:,