1、第七章 炔烃和二烯烃炔烃是含有 (triple bond)。二烯烃是含有两个 C=C 的不饱烃。两者都比碳原子数目相同的单烯烃少两个氢原子,通式 CnH2n-2 。1 炔烃的结构、异构和物理性质一、炔烃的结构乙炔的分子式是 C2H4,构造式 碳原子为 sp 杂化。两个 sp 杂化轨道向碳原子核的两边伸展,它们的对称轴在一条直线上,互成 180o 。在乙炔分子中,两个碳原子各以一个 sp 轨道互相重叠,形成一个 C-C 键,每个碳原子又各以一个 sp 轨道分别与一个氢原子的 1s 轨道重叠形成 C-H 键。此外,每个碳原子还有两个互相垂直的未杂化的 p 轨道(p x,py),它们与另一碳的两个
2、p 轨道两两相互侧面重叠形成两个互相垂直的 键。两个正交 p 轨道的总和 ,其电子云呈环形的面包 圈。故乙炔的叁键是由一个 键和两个相互垂直的 键组成。两个 键的电子云分布好象是围绕两个碳原子核心的圆柱状的 电子云。乙炔分子中两个碳原子的 sp 轨道,有 s 性质,s 轨道中的电子较接近了核。因此被约束得较牢,sp 轨道比 sp2轨道要小,因此 sp 杂化的碳所形成的键比 sp2杂化的碳要短,它的 p 电子云有较多的重叠。现代物理方法证明:乙炔中所有的原子都在一条直线上, 键的键长为0.12nm,比 C=C 键的键长短。就是说乙炔分子中两个碳原子较乙烯的距离短,原子核对于电子的吸引力增强了。
3、键能为 835KJ/mol.(第一个 键能 225 835-610=225)(C=C 610KJ/mol, 键能 264.4 610-345.6=264.4;C-C 345.6KJ/mol)二、炔烃的异构和命名1. 炔烃的异构炔烃的异构是由于碳架不同或散件位置不同而引起的。在碳链分支的地方不可能有三键,炔烃也没有顺反异构体,因此,炔烃的异构比烯烃简单。2.炔烃的命名炔烃的命名法和烯烃相似,只将“烯”字改为“炔”。如:若同时含有叁键和双键,这类化合物称为烯炔。它的命名首先选取含双键和叁键最长的碳链为主链。位次的编号通常使双键具有最小的位次。三、炔烃的物理性质炔烃的沸点比对应的烯烃高 10-20C
4、,比重比对应的烯烃稍大,在水里的溶解度也比烷和烯烃大些。2.炔烃的反应炔烃的反应都发生在叁键上,叁键是炔烃的官能团。1.炔烃的酸性 含炭酸和烃类的酸性 有机化合物中 CH 键的电离可以看作是酸性电离: R3CHKaR3C- + H+ pKa= -logKa通常称这种酸为含炭酸,含炭酸的共轭碱为碳负离子。由于碳的电负性较小,烃类作为含炭酸,其酸性极弱,一般情况下 Ka 不能直接测定。乙烷、乙烯、乙炔作为含碳酸,其共轭碱分别为: H2CHHC H3CH2sp sp2 sp3带负电荷的碳原子,其轨道 s 成分越大,稀淡紫的能力越强,相应的碱碱性越弱,而共轭酸的酸性越强。因此,共轭碱的碱性强弱次序为:
5、 H2CHHC H3CH2 炔化物的生成 这可以看作是酸碱反应。RCH + Na+H2-NH3(l) RCNa+ NH3可以看作是强酸(炔烃)RCH + n -C4H9Li RCLi+ n-C4H10RCH + C2H5MgBr RCMgBr + C2H6与弱酸(烷烃)的盐(烷基锂或格氏试剂)之间的反应,生成的炔化物的性质与一般的有机金属化合物相同。 过度金属炔化物 将乙炔或 型炔烃加入硝酸银或氯化亚铜的氨RCH溶液中,立即生成炔化银的白色沉淀或炔化亚铜的红色沉淀。这个反应很灵敏,现象较显著,可以用于乙炔或 型炔烃的定型鉴定。RCHHCH+ 2Ag(NH3)2NO3 AgCAg+ 2NH4O3
6、 + 2NH3HCH+ 2Cu(NH3)2Cl CuCu+ 2NH4Cl + 2NH32.亲电加成:亲电加成,炔需首先给出电子对与正离子结合,与烯相比,炔烃的 键的碳为 sp 杂化,吸电子能力比较强,故不易给出电子对,所以较烯烃不易进行亲电加成反应。再者,叁键的键长(0.12nm)比双键(0.134nm)短,它的 p 电子云有较多的重叠,所以 键较难被打开。 与卤素:(双烯优先与 Br 反应) 与 HX 水化 先生成烯醇(不稳定),立即转变成稳定的羰基化合物。RCH+HOHRCH22ORCH2O2H2OCH2RO+ H3O+CH2RO RCH3O炔烃在含硫酸汞的稀硫酸水溶液中易与水反应,汞盐是
7、做催化剂。这一反应相当于水加到叁键上, 先生成一个很不稳定的乙烯醇,羟基直接与碳碳双键相连,故称为烯醇。它进行分子内部重排成为羰基化合物。这里的炔与 H-OH 的加成遵循马氏规则,其他炔烃水化时,则变成酮。这类反应的一个缺点是,汞盐毒性大,影响健康,污染水域,所以目前世界各国都在寻找它的低毒或无毒催化剂。(但工业上主要改用以乙烯为原料的Waeker 法)PdCl2催化乙烯水合为乙醛(1938)CuCl 2为辅助催化剂。3.硼氢化反应炔烃的硼氢化可以停留在含烯键产物的一步: C2H5CC2H5BH3 -THFC2H5C2H53B硼氢化物用酸处理生成顺式烯烃,氧化则生成酮或醛: C2H5HC2H5
8、3BHOAcC2H5C2H5HH2O2,H-C2H5C2H5OHC2H5C2OC2H5采用位阻大的而取代鹏烷作试剂,可以使散件在链短的炔烃置于一摩尔鹏烷加成,产物经氧化水解后得到醛(由炔烃地直接水解只能得到酮) CH3(CH2)5CHR2BHH3C(H2C)5 HBR2H2O2 ,H-CH3(CH2)5CH2O4.氧化 KMnO 4:反应后高锰酸钾溶液颜色褪去,这个反应可用作定性鉴定。 O 3炔烃和臭氧作用生成臭氧化合物,遇水很快为水分解生成酸。可由产物推测炔的结构。 叁键比双键难于氧化,双键和叁键同时存在时,双键首先被氧化。可以这样理解,炔是还原剂,CrO 3是氧化剂,还原剂是失去电子的,炔
9、与烯相比,炔不易失去电子,故不易被氧化。5.催化氢化炔烃能与两分子 H2加成,断开一个 键,加入一分子 H2,成为烯烃;然后再断开第二个 键加入另一分子 H2成为烷烃。 键(均裂)第一个 键键能 225KJ/mol C=C 键键能 264.4KJ/mol常常是第一步反应的速率比第二步快,因此在适当的条件下,炔烃的加成可以终止在第一步,生成烯烃衍生物。如在弱的氢化催化剂(Pd 或 Ni)和适量的氢气中,炔烃可以被氢化到烯烃。若在强的氢化催化剂(Pt)和过量的氢气中,则炔烃被氢化成烷烃。选择一定的催化剂,能使炔烃氢化停留在烯烃阶段,并还可控制产物的构型。() Lindlar 催化剂和 P-Z 催化
10、剂催化氢化,主要生成顺式烯烃。Lindlar 催化剂:用醋酸铅钝化后的沉积在碳酸钙上的钯: Pd/CaCO 3 P-Z 催化剂:Ni2B,它是有醋酸镍和钠硼氢制成。催化剂加氢顺式加成产物。机理:(1)(2)(3)(4)(机理:introduction organic chemistry p345-6)(以上徐积功 p129-130)()用钠或锂在液氨中还原,生成反式烯烃。 炔烃部分氢化时,叁键首先氢化成烯烃。根据催化氢化机理,第一步是吸附,然后 键打开,H 2 键断裂,形成C-H 键,最后解吸。打开第一个 键需 225KJ/mol 打开 C=C 键需264.4KJ/mol 故 优先氢化。因氢化
11、是 H2还原剂 H.“给出电子” 或 C=C 是氧化剂 C“得到电子”中 C 为 sp 杂化。s 成分较 sp2多,吸电子能力 sp 杂化的 C 比 sp2杂化的 C强故 易被还原首先氢化(得氢)。(有机化学中,得到氢叫还原,在这个反应中,氢是还原剂,烯、炔是氧化剂,容易得到电子的优先被还原,炔中的 C 为 sp 杂化,吸电子能力较强,所以优先比烯被还原,得到氢)6.与 HCN、EtOH、CH 3COOH 等的反应:7. 聚合:炔烃能起聚合反应,它一般不聚合成高聚物,在不同的催化剂作用下,发生不同的低聚反应,二聚、三聚、四聚。3.炔烃的制备1.由二元卤代烷脱卤化氢邻二卤代烷的脱卤二卤代烷脱去第
12、一分子卤化氢是比较容易的,是制备不饱和卤代烃的一个有用的方法。脱去第二分子卤化氢较困难,需使用较激烈的条件用热的 KOH 或NaOH(醇)溶液,或使较强的碱用 NaNH2才能形成炔烃。偕二卤代烷脱卤化氢 实际上酮在有吡啶的干燥苯中与 PCl5加热,即可制得炔烃。2. 由炔化物制备(RX,2,3,主要起消除反应,使 RX 变为烯)3.四卤代烷的脱卤四卤代烷的脱卤反应很少应用,这是因为这种卤代物本身常常是从炔烃制得的。可用来保护叁键,将叁键转变为四卤代烷,之后再用锌粉处理的使叁键再生。4.乙炔1.制法:工业制法主要有两种(1)电石法 Ca2 + 2H2OCa(OH)2 + HCH(2)由烃类裂解2
13、.性质:易溶于丙酮。为了运输和使用的安全,通常把乙炔在 1.2MPa 下压入盛满丙酮浸润饱和的多孔性物质(如硅藻土、软木屑、或石棉)的刚筒中。乙炔是易爆炸的物质,高压的乙炔,液态或固态的乙炔受到敲打或碰击时容易爆炸,乙炔的丙酮溶液是安全的,故把它溶于丙酮中可避免爆炸的危险。3.用途有多种用途,如:合成氯丁橡胶7. 共轭效应和共振式简论一、共轭效应从 1,3-丁二烯的分子轨道的讨论指出,在其共轭体系中,四个 电子是在四个碳原子的分子轨道中运动,这种离域的结果,使其电子云密度的分布有所改变,从而使其内能更小,分子更稳定,键长趋于平均化,这样由于共轭产生的效应叫做共轭效应(Conjugative e
14、ffect)共轭效应产生的必要条件:共平面性:共轭体系中各个 键都在同一平面内。参加共轭的 p 轨道互相平行。如果共平面性受到破坏,使 p 轨道的相互平行就发生偏离,减少了它们之间的重叠,共轭效应就随之减弱,或者消失。(一)共轭效应的表现:1.键长趋于平均化:由于电子云密度分布的改变,在链状共轭体系中,共轭链愈长,则双键及单键的键长愈接近。趋于相等。如:2.折射率较高光线穿过真空的速度与穿过透明物质的速度之比称为该物质的折光率。实际测定时以空气为相对标准,即光线在空气中的速度与在透明物质中的速度之比称为该物质的折光率。光在物质中减速是因受分子中电子,特别是结合得不太紧的价电子的干扰而引起的。而
15、这种干扰是与分子的极化直接相联的。分子越极化,折光率越高。说明该分子易极化,由于共轭体系 电子云易极化,因此它的折光率也比相应的孤立二烯烃高。3.共轭二烯烃体系的能量低决定内能大小方法之一就是测量氢化热,氢化热越低,分子内能越低。这是因为它们分子中 4 个 电子处于离域的 轨道中,共轭的结果,使共轭体系具有较低的内能,分子稳定。(二)共轭体系的类型:(三)共轭效应的传递共轭效应沿共轭 键传递,不受距离的限制。(四)静态 p- 共轭和静态 - 共轭效应的相对强度。1. p- 共轭p 电子朝着双键方向转移,呈供电子效应(+C)。对同族元素来说,p 电子轨道与碳原子 p 轨道体积越接近,重叠得越好,
16、共轭能力越强, 的 p 电子轨道体积越大,与碳的 p 电子轨道重叠的越少,共轭能力越弱。对同周期的元素来说,p 轨道的大小相接近,元素的电负性越强,越不易给出电子,p- 共轭就越弱。2.- 共轭:电子云转移的方向与 p- 共轭情况不同,电负性强的元素吸引 电子,使共轭体系的电子云向该元素偏离,呈现出吸电子共轭效应(-C)“-C”的强度:同周期的元素,电负性愈强,-C 效应愈大。=O =NR =CR2同族元素来说,随着原子序数的增加, 键叠合程度变小,-C 效应变小。=O =S3.- 共轭 效应和 -p 共轭效应(超共轭效应)通过氢化热数据可以说明超共轭效应的存在。如:CH 3CH2CH=CH2
17、 氢化热 126.8KJ/mol (能量高)顺-CH 2CH=CHCH3 氢化热 119.7KJ/mol (能量低)主要原因:C-H 键与双键形成 - 共轭越多,离域能较大,体系越稳定。超共轭效应的大小: -CH 3 -CH2R -CHR2 -CR3-C-H 键越多,- 超共轭效应越强。二、共振论共振论是鲍林(Pauling L)在 1933 年左右提出来的,其基本要点如下:1.当一个,离子或自由基按照价键理论可以写出现两个以上的经典结构林时,这些结构式构成一个共振杂化体,共振杂化体接近实际分子。 如苯分子是由下列式子参加共振的:为共振 符号,与表示平衡的 不 同。这些可能的经典结构式称为极限
18、式,任何一个极限式都不是以反映该分子的真实结构。2.共振结构式对分子的贡献大小与它们的稳定性大小成正比。在判断关于离子和分子共振结构的相对稳定性时,下示这些经验规则常常是有用的。 有较多共价键的结构通常比共价键少的结构更稳定。 在电负性更大的原子上带负电荷的结构比负电荷在电负性较小的原子上的结构更稳定;同样,正电荷在电负性小的原子上比电负性大的原子更加稳定。 键角和键长有改变的结构不稳定。 在其他条件相同时,如果写出主要共振式越多,分子则越稳定 3、书写极限式应注意的规则 . 必须遵守价键理论,氢原子的外层电子数不能超过 2 个。第二周期元素最外层电子数不能超过 8 个,碳为 4 价。.原子核
19、的相对位置不能改变,只允许电子排布上有所差别。但不能写成环状结构:这样改变了碳架,不符合要求。.在所有极限式中,未共用电子数必须相等。目前,国内外对共振论的看法不一致。7 二烯烃一、二烯烃的分类及命名(一)根据两个双键的相对位置可把二烯烃分为三类:1.累积(聚集)二烯烃即含有 体系的二烯烃。如,丙二烯 CH2=C=CH2,两个双键积累在同一个碳原子上。2.共轭二烯烃两个双键被一个单键隔开,即含有 体系的二烯烃。如1,3-丁二烯 ,这样的体系叫共轭体系,这样的两个双键叫做共轭双键。3.孤立(隔离)二烯烃两个双键被两个或两个以上单键隔开的二烯烃称为孤立二烯烃。即(n1).如,1,4-戊二烯。孤立二
20、烯烃的性质和单烯烃相似。(二)多烯烃的系统命名法和烯烃相似,命名时,将双键的数目用汉字表示,位次用阿拉伯数字表示。如:多烯烃的顺、反异构体,则用顺、反或 Z、E 表示:1,3-丁二烯分子中两个双键可以在碳原子 2、3 之间的同一侧或在相反的一侧,这两种构象式分别称为 s-顺式,或 s-反式(s 表示连接两个双键之间的单键(single bond)。二、二烯烃的结构及性质1.丙二烯:CH 2=C=CH2结构: 性质:丙二烯较不稳定,性质较活泼,双键可以一个一个打开发生加成反应,也可发生水化和异构化反应。2. 1,3-丁二烯结构:丁二烯分子中,每个碳原子都以 sp2轨道相互重叠或与氢原子的 1s
21、轨道重叠,形成三个 C-C 键和六个 C-H 键。这些 键都处在同一个平面上,它们之间的夹角都接近 120,此外每个碳原子还剩下一个来参加杂化的与这个平面垂直的 p 轨道。四个 p 轨道的对称轴互相平行侧面互相重叠,形成了包含四个碳原子的四个电子的共轭体系。分子轨道:1,3-丁二烯的四个 p 轨道,可组成四个 电子的分子轨道。在基态时四个 p 电子都在 1和 2中,而 3, 4则全空着。说明在 1轨道中 电子云的分布对所有的碳碳键都加强;从 2分子轨道中看出 C1-C2,与 C3-C4之间的键加强了,但 C2-C3之间无电子云。从成键轨道 1、 2电子云分布看出,所有的键都具有 键的性质,但
22、C2-C3键所具有的 键性质小些。用电子衍射法测定 1,3-丁二烯的各键长为:C 2-C3单键是 0.1483nm,比乙烷的 C-C 键长 0.1534nm 短了一些。C=C 双键是 0.1337nm(邢其毅 p161),比普通的 C=C 双键(0.134nm)略短。氢化热:CH2=CH-CH=CH2 预计:125.5+125.5=251KJ/mol实测: 238KJ/mol 比预计的低说明共轭二烯烃的能量比相应的孤立二烯烃低,这是由于 p 电子的离域而引起的,叫离域能:E=251(预计)-238(实测)=13KJ/mol离域能定义:(查)三、丁二烯和异戊二烯它们是合成橡胶的重要原料。1.丁二
23、烯 制备: 反应:2.异戊二烯法沃斯基反应: COH3H3 +HCHKOHC3H33 CH2/PdLinderH3CH3H3CH2Al2O3- H2H2CCHH23四、共轭二烯烃的化学特性1.Diels-Alder 反应(于 1928 年发现的)是一个共轭二烯烃和另一个亲二烯体组分发生 1,4-加成反应,生成环状化合物。所以,又称双烯合成。2. 1,4-加成共轭二烯烃加成时有两种可能。试剂不仅可以加到一个双键上,而且也可以加到共轭体系的两端的碳原子上,前者称为 1,2-加成,产物在原来的位置上保留一个双键;后者称为 1,4-加成,原来的两个双键消失了。而在 2,3 两个碳原子间生成一个新的双键
24、。历程:共轭二烯烃与溴的加成反应和单烯烃相似,也是分两步进行的。第一步:因碳正离子()比稳定,第一步主要是通过形成碳正离子()进行的。第二步1,2-加成和 1,4-加成产物的比例取决于反应条件:五、 速度控制与平衡控制我们知道,从原则上来说,所有反应均是可逆的。假定一个化合物 A,在缓和条件下可以生成 B;而在较为剧烈的条件下生成产物 C,则意味着 B 的形成要快于 C 的形成,这是由其活化能大小所决定。当反应在低温下进行时,一般反应都处于不可逆状态,因为难于达到平衡。也就是说由于给出的能量很低,只能提供反应物 A 超越一定能垒形成 B,而这种能量不是以使 B 回复到 A,再反应而成产物 C,
25、但是 B 产物形成较快,因此成为主要产物。这种反应称为速度控制(也叫动力学控制)的反应。在反应未达到平衡前,利用反应快速的特点来控制产物组成的比例,这种反应叫做速度控制。而当反应在高温较为剧烈的条件下进行时,反应过程变为可逆,并可达到平衡。这时,由于产物 C 比较稳定,反应可以在产物方向中进行选择,因为二者可以相互转化。因此在可逆反应中,处于平衡体系中热力学稳定产物将占优势。这种反应称为平衡控制(也叫热力学控制)的反应。利用平衡到达来控制产物组成比例的反应即平衡控制。在平衡控制反应中, ,C 比 B 稳定,B 能超越能垒又回到A,A 形成 C,因 C 稳定,逆反应 不易发生,故产物为 C。现在我们再回到共轭体系的加成产物中来,溴化氢和 1,3-丁二烯在低温缓和条件下的反应,是以速度控制的 1,2-加成产物为主。而在较高的反应温度时,反应可以可逆地达到平衡,此时则以热力学稳定的 1,4-加成产物为主。(蔡孟深:p80-81)一般,通过缩短反应时间或降低温度等手段,可达到速度控制的目的。通过延长反应时间或提高反应温度使其达到平衡点来控制。