1、(苏教版)四年级数学上册教学反思 运算律 1教学反思学生的知识的理解莫过于能加以运用。今天数学课是一节运算律的复习课。班上学生已经基本掌握了简便计算中运用方法进行简算的能力。再进行简算的练习无非是浪费时间或是造就“熟练工”而已。于是课的开始,提问学生,我们为什么要学习运算律。(为了运算简便)我请学生用字母的方式写出简便运算中所用的方法。时间不长,提问时,学生很快说了已经写好了加法交换律、加法结合律、乘法交换律、结合律、分配律的字母公式。有学生补充 a+(b-c)= a+b-c、a-(b+c)= a-b+c、a-(b-c)= a-b+c 以及 a(bc) = abc、a(bc) =abc。我随后
2、提问:你们能用这些字母公式举几个例子吗?学生异口同声地说:“能!”当说到 a+(b-c)= a+b-c 时,学生举例:35+(75-29)。(表示肯定)提问:你还能还用这个字母公式,再出一道不同的简便运算吗?同学们面面相觑。于是我便讲解第一个例子。35+(75-29)这道算式,我们看到它后,想到什么?(用 35 与 75 相加)那么可以直接相加吗?(不可以,要去括号)我们去括号时要怎么样?(变符号)这时就可以用 35 与 75 相加了。如果从字母公式上看也就是目的要让 a+b。如果 b-c 简便的话就可以直接算了,那么还可以举什么样式的例题呢?有生举例:135+(52-35)。我连忙提问:你们看得明白吗?大部分学生明白了,于是指导讲解。学生分析:135 能减 35 就行了,不能直接减,所以要去括号。式子就变成135+52-35,这时可以用 135 选减 35 再 52。我补充这一题的目的就是要让 a-c,所以我们举例时要注意这个问题。学生再试举一例。a-(b+c)= a-b+c 举两个不同的例题时,学生已经基本掌握出题的要领。