1、精选高中模拟试卷第 1 页,共 17 页丰润区高级中学 2018-2019 学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 阅读如图所示的程序框图,运行相应的程序若该程序运行后输出的结果不大于 20,则输入的整数 i 的最大值为( )A3 B4 C5 D62 如图,在正方体 中, 是侧面 内一动点,若 到直线 与直线 的距1ABP1BCPBC1D离相等,则动点 的轨迹所在的曲线是( )PD1 C1 A1 B1 P D C A B A.直线 B.圆 C.双曲线 D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力.3 将函数 y=cosx 的
2、图象上各点的横坐标伸长到原来的 2 倍(纵坐标不变),再向右平移 个单位,所得函数图象的一条对称轴方程是( )精选高中模拟试卷第 2 页,共 17 页Ax= B C D4 天气预报说,在今后的三天中,每一天下雨的概率均为 40%现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生 0 到 9 之间取整数值的随机数,用 1,2,3,4 表示下雨,用5,6,7,8,9,0 表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况经随机模拟试验产生了如下 20 组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027
3、 556 488 730 113 537 989据此估计,这三天中恰有两天下雨的概率近似为( )A0.35 B0.25 C0.20 D0.155 设 Sn 为等差数列a n的前 n 项和,已知在 Sn 中有 S170,S 180,那么 Sn 中最小的是( )AS 10 BS 9 CS 8 DS 76 不等式 x(x1)2 的解集是( )Ax|2x 1 Bx| 1 x2 Cx|x1 或 x 2 Dx|x2 或 x17 两个随机变量 x,y 的取值表为x 0 1 3 4y 2.2 4.3 4.8 6.7若 x,y 具有线性相关关系,且 bx2.6,则下列四个结论错误的是( )y Ax 与 y 是正
4、相关B当 y 的估计值为 8.3 时,x6C随机误差 e 的均值为 0D样本点(3,4.8)的残差为 0.658 若定义在 R 上的函数 f(x)满足:对任意 x1,x 2R 有 f(x 1+x2)=f(x 1)+f(x 2)+1,则下列说法一定正确的是( )Af(x)为奇函数 Bf(x)为偶函数 Cf(x)+1 为奇函数 Df (x)+1 为偶函数9 函数 y=2|x|的图象是( )A B C D精选高中模拟试卷第 3 页,共 17 页10两座灯塔 A 和 B 与海洋观察站 C 的距离都等于 a km,灯塔 A 在观察站 C 的北偏东 20,灯塔 B 在观察站 C 的南偏东 40,则灯塔 A
5、 与灯塔 B 的距离为( )Aakm B akm C2akm D akm11设集合 A1,2,3,B4,5 ,Mx|xa b,aA,bB,则 M 中元素的个数为( ) 。A3B4C5D612如图所示,网格纸表示边长为 1 的正方形,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A B61035+60+3514C D 4【命题意图】本题考查三视图和几何体体积等基础知识,意在考查空间想象能力和基本运算能力二、填空题13为了预防流感,某学校对教室用药熏消毒法进行消毒已知药物释放过程中,室内每立方米空气中的含药量 y(毫克)与时间 t(小时)成正比;药物释放完毕后,y 与 t 的函数关系式
6、为 y=( ) ta (a 为常数),如图所示,据测定,当空气中每立方米的含药量降低到 0.25 毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室精选高中模拟试卷第 4 页,共 17 页14对于集合 M,定义函数 对于两个集合 A,B ,定义集合 AB=x|fA(x)f B(x)=1已知 A=2,4,6,8,10,B=1 ,2,4,8,12,则用列举法写出集合 AB 的结果为 15已知 , ,则 的值为 1sinco3(0,)sinco71216椭圆 + =1 上的点到直线 l:x2y 12=0 的最大距离为 17函数 f(x)=x 2ex 在区间( a,a
7、+1)上存在极值点,则实数 a 的取值范围为 18已知函数 的一条对称轴方程为 ,则函数 的最大值为21()sincosif x6x()fx_【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想三、解答题19某游乐场有 A、B 两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏 A,丙丁两人各自独立进行游戏 B已知甲、乙两人各自闯关成功的概率均为 ,丙、丁两人各自闯关成功的概率均为 (1)求游戏 A 被闯关成功的人数多于游戏 B 被闯关成功的人数的概率;(2)记游戏 A、B 被闯关总人数为 ,求 的分布列和期望精选高中模拟
8、试卷第 5 页,共 17 页20如图,在 RtABC 中, EBC=30,BEC=90 ,CE=1,现在分别以 BE,CE 为边向 RtBEC 外作正EBA 和正CED()求线段 AD 的长;()比较ADC 和 ABC 的大小21已知函数 f(x)=e x(x 2+ax)在点(0,f (0)处的切线斜率为 2()求实数 a 的值;()设 g(x)= x(xt )( tR),若 g(x)f(x)对 x0,1 恒成立,求 t 的取值范围;()已知数列a n满足 a1=1,a n+1=(1+ )a n,求证:当 n2, nN 时 f( )+f( )+L+f( )n( )(e 为自然对数的底数,e2.
9、71828)精选高中模拟试卷第 6 页,共 17 页22记函数 f(x)=log 2(2x3)的定义域为集合 M,函数 g(x)= 的定义域为集合N求:()集合 M,N;()集合 MN, R(MN)23(选做题)已知 f(x)=|x+1|+|x1|,不等式 f(x) 4 的解集为 M(1)求 M;(2)当 a,b M 时,证明:2|a+b| |4+ab|24在锐角三角形 ABC 中,内角 A,B ,C 所对的边分别为 a,b,c,且 2csinA= a(1)求角 C 的大小;(2)若 c=2,a 2+b2=6,求ABC 的面积精选高中模拟试卷第 7 页,共 17 页精选高中模拟试卷第 8 页,
10、共 17 页丰润区高级中学 2018-2019 学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:模拟执行程序框图,可得s=0,n=0满足条件 ni,s=2,n=1满足条件 ni,s=5,n=2满足条件 ni,s=10,n=3满足条件 ni,s=19,n=4满足条件 ni,s=36,n=5所以,若该程序运行后输出的结果不大于 20,则输入的整数 i 的最大值为 4,有 n=4 时,不满足条件 ni,退出循环,输出 s 的值为 19故选:B【点评】本题主要考查了循环结构的程序框图,属于基础题2 【答案】D. 第卷(共 110 分)3 【答案】B【解析】解:将函数 y
11、=cosx 的图象上各点的横坐标伸长到原来的 2 倍(纵坐标不变),得到 y=cos x,再向右平移 个单位得到 y=cos (x ) ,由 (x )=k,得 x =2k,精选高中模拟试卷第 9 页,共 17 页即 +2k,kZ,当 k=0 时, ,即函数的一条对称轴为 ,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键4 【答案】B【解析】解:由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下 20 组随机数,在 20 组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共 5 组随机数,所求概率为
12、故选 B5 【答案】C【解析】解:S 160,S 17 0, =8(a 8+a9)0, =17a9 0,a80,a 90,公差 d0Sn 中最小的是 S8故选:C【点评】本题考查了等差数列的通项公式性质及其求和公式、不等式的解法,考查了推理能力与计算能力,属于中档题6 【答案】B【解析】解:x(x1)2,x2x20,即(x2 )(x+1)0,1x2,即不等式的解集为x| 1x2故选:B精选高中模拟试卷第 10 页,共 17 页7 【答案】【解析】选 D.由数据表知 A 是正确的,其样本中心为( 2,4.5),代入 bx2.6 得 b0.95,即y 0.95 x2.6,当 8.3 时,则有 8.
13、30.95x2.6,x 6, B 正确根据性质,随机误差 的均值为y y e0, C 正确样本点(3,4.8)的残差 4.8(0.9532.6)0.65,D 错误,故选 D.e 8 【答案】C【解析】解:对任意 x1,x 2R 有f(x 1+x2)=f ( x1)+f(x 2)+1,令 x1=x2=0,得 f(0)=1令 x1=x,x 2=x,得 f(0)=f(x)+f ( x)+1,f(x)+1= f( x)1= f(x)+1,f(x)+1 为奇函数故选 C【点评】本题考查函数的性质和应用,解题时要认真审题,仔细解答9 【答案】B【解析】解:f(x)=2 |x|=2|x|=f(x)y=2 |
14、x|是偶函数,又函数 y=2|x|在0,+)上单调递增,故 C 错误且当 x=0 时,y=1;x=1 时, y=2,故 A,D 错误故选 B【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键10【答案】D【解析】解:根据题意,ABC 中,ACB=18020 40=120,AC=BC=akm,由余弦定理,得 cos120= ,精选高中模拟试卷第 11 页,共 17 页解之得 AB= akm,即灯塔 A 与灯塔 B 的距离为 akm,故选:D【点评】本题给出实际应用问题,求海洋上灯塔 A 与灯塔 B 的距离着重考查了三角形内角和
15、定理和运用余弦定理解三角形等知识,属于基础题11【答案】 B【解析】 由题意知 xab,aA,bB ,则 x 的可能取值为 5,6,7,8.因此集合 M 共有 4 个元素,故选 B12【答案】C【解析】还原几何体,由三视图可知该几何体是四棱锥,且底面为长 ,宽 的矩形,高为 3,且 平62VE面 ,如图所示,所以此四棱锥表面积为 ABD1S=20+135+26,故选 C61035=+46461010113 26EVD CBA二、填空题13【答案】0.6【解析】解:当 t0.1 时,可得 1=( ) 0.1a0.1a=0a=0.1由题意可得 y0.25= ,精选高中模拟试卷第 12 页,共 17
16、 页即( ) t0.1 ,即 t0.1解得 t0.6,由题意至少需要经过 0.6 小时后,学生才能回到教室故答案为:0.6【点评】本题考查函数、不等式的实际应用,以及识图和理解能力易错点:只单纯解不等式,而忽略题意,得到其他错误答案14【答案】 1,6,10, 12 【解析】解:要使 fA(x)f B(x)=1,必有 xx|xA 且 xBx|x B 且 xA=6,101,12=1,6, 10,12,所以 AB=1 ,6,10,12故答案为1,6,10,12【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题15【答案】 17(62)3【解析】, 7sini
17、sincosin1243343264, 故答案为 .176co172si17(2)3精选高中模拟试卷第 13 页,共 17 页考点:1、同角三角函数之间的关系;2、两角和的正弦公式.16【答案】 4 【解析】解:由题意,设 P(4cos ,2 sin)则 P 到直线的距离为 d= = ,当 sin( )=1 时,d 取得最大值为 4 ,故答案为:4 17【答案】 (3, 2)( 1,0) 【解析】解:函数 f(x)=x 2ex 的导数为 y=2xex+x2ex =xex (x+2),令 y=0,则 x=0 或2,2 x 0 上单调递减,( , 2),(0,+)上单调递增,0 或 2 是函数的极
18、值点,函数 f(x)=x 2ex 在区间(a,a+1)上存在极值点,a2 a+1 或 a0a+1,3a 2 或1 a 0故答案为:(3, 2)(1,0)18【答案】1【解析】三、解答题19【答案】 精选高中模拟试卷第 14 页,共 17 页【解析】解:(1) (2) 可取 0,1,2,3,4,P(=0)=(1 ) 2(1 ) 2= ;P(=1)= ( )(1 ) ( )2+ (1 ) 2 = ;P(=2)= + += ;P(=3)= = ;P(=4)= = 的分布列为: 0 1 2 3 4PE=0 +1 +2 +3 +4 = 【点评】本题主要考查 n 次独立重复实验中恰好发生 k 次的概率,等
19、可能事件的概率,体现了分类讨论的数学思想,属于中档题20【答案】 【解析】解:()在 Rt BEC 中,CE=1,EBC=30,BE= ,在ADE 中, AE=BE= ,DE=CE=1,AED=150,由余弦定理可得 AD= = ;()ADC=ADE+60 ,ABC=EBC+60 ,问题转化为比较ADE 与 EBC 的大小在ADE 中,由正弦定理可得 ,sinADE= =sin30,ADE 30ADCABC精选高中模拟试卷第 15 页,共 17 页【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键21【答案】 【解析】解:()f(x) =ex
20、(x 2+ax),f(x)=e x(x 2+ax)+e x( 2x+a)=e x(x 2+ax2xa);则由题意得 f( 0)=( a)=2,故 a=2()由()知,f(x)=e x(x 2+2x),由 g(x)f(x)得,x( xt )e x(x 2+2x),x 0,1;当 x=0 时,该不等式成立;当 x(0,1时,不等式x+t+ ex(x+2 )在(0,1上恒成立,即 tex(x+2)+x max设 h(x)=e x(x+2)+x ,x (0,1 ,h(x)= ex(x+1 )+1 ,h(x) =xex0,h(x)在(0,1单调递增,h(x)h (0)=0,h(x)在(0,1单调递增,h
21、(x) max=h(1)=1 ,t1()证明:a n+1=(1+ )a n, = ,又 a1=1,n2 时,a n=a1 =1 =n;对 n=1 也成立,a n=n当 x(0,1时,f (x)=e x(x 22)0,精选高中模拟试卷第 16 页,共 17 页f(x)在0 ,1 上单调递增,且 f(x) f(0)=0又 f( )(1i n1,iN )表示长为 f( ),宽为 的小矩形的面积, f( ) f(x)dx,(1i n1,iN), f( )+f( )+f( )= f( )+f( )+ +f( ) f(x)dx又由(),取 t=1 得 f(x)g(x)=x 2+(1+ )x, f(x)dx
22、 g(x)dx= + , f( )+f( )+f( ) + ,f( )+f( )+f( )n( + )【点评】本题考查函数、导数等基础知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力22【答案】【解析】解:(1)由 2x30 得 x ,M=x|x 由(x3)(x1)0 得 x1 或 x3,N=x|x1,或 x3(2)MN= (3,+ ),MN=x|x1,或 x3,C R(M N)=【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题23【答案】 【解析】()解:f(x)=|x+1
23、|+|x1|=当 x1 时,由 2x4,得2x1;当1 x1 时,f(x)=24;当 x1 时,由 2x4,得 1x2精选高中模拟试卷第 17 页,共 17 页所以 M=(2,2)()证明:当 a,bM,即2a,b2,4(a+b) 2(4+ab) 2=4(a 2+2ab+b2) (16+8ab+a 2b2) =(a 24)(4b 2)0,4(a+b) 2(4+ab) 2,2|a+b|4+ab|【点评】本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式24【答案】 【解析】(本小题满分 10 分)解:(1) , ,2 分在锐角ABC 中, ,3 分故 sinA0, , 5 分(2) ,6 分 ,即 ab=2,8 分 10 分【点评】本题主要考查了正弦定理,特殊角的三角函数值,余弦定理,三角形的面积公式在解三角形中的应用,考查了转化思想,属于基础题