1、精选高中模拟试卷第 1 页,共 19 页扶沟县高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 与向量 =(1,3,2)平行的一个向量的坐标是( )A( ,1,1) B(1, 3,2) C( , ,1) D( ,3,2 )2 下列函数中,既是奇函数又在区间(0,+)上单调递增的函数为( )Ay=x 1 By=lnx Cy=x 3 Dy=|x|3 已知 f(x)=x 36x2+9xabc,abc,且 f(a)=f(b)=f(c)=0现给出如下结论:f(0)f (1) 0;f(0)f (1) 0;f(0)f (3) 0;f(0)f (3) 0其中正确
2、结论的序号是( )A B C D4 在区域 内任意取一点 P(x,y),则 x2+y21 的概率是( )A0 B C D5 “方程 + =1 表示椭圆”是“3m5”的( )条件A必要不充分 B充要 C充分不必要 D不充分不必要6 已知 A,B 是以 O 为圆心的单位圆上的动点,且| |= ,则 =( )A1 B1 C D7 在ABC 中,sinB+sin(A B)=sinC 是 sinA= 的( )A充分非必要条件 B必要非充分条件C充要条件 D既不充分也非必要条件8 已知 f(x),g(x)分别是定义在 R 上的偶函数和奇函数,且 f(x)g(x)=x 32x2,则 f(2)+g(2)=(
3、)A16 B16 C8 D89 已知圆 C:x 2+y22x=1,直线 l:y=k(x1)+1,则 l 与 C 的位置关系是( )精选高中模拟试卷第 2 页,共 19 页A一定相离 B一定相切C相交且一定不过圆心 D相交且可能过圆心10已知函数 f(x)满足:x 4,则 f(x)= ;当 x4 时 f(x)=f(x+1),则 f(2+log 23)=( )A B C D11设公差不为零的等差数列 的前 项和为 ,若 ,则 ( )nanS423()a74SaA B C7 D1474145【命题意图】本题考查等差数列的通项公式及其前 项和,意在考查运算求解能力.12算数书竹简于上世纪八十年代在湖北
4、省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖” 的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长 L 与高 h,计算其体积 V 的近似公式 V L2h,它实际上是将圆锥体积公式中的圆周率 近似取为3,那么,近似公式 V L2h 相当于将圆锥体积公式中的 近似取为( )A B C D二、填空题13已知椭圆 + =1(a b0)上一点 A 关于原点的对称点为 B,F 为其左焦点,若 AFBF,设ABF=,且 , ,则该椭圆离心率 e 的取值范围为 14直线 l: ( t 为参数)与圆 C: ( 为参数)相交所得的弦长的取值范围是 15
5、设 p:f(x)=e x+lnx+2x2+mx+1 在(0,+)上单调递增,q:m 5,则 p 是 q 的 条件16( ) 0+( 2) 3 = 17在ABC 中,点 D 在边 AB 上,CDBC,AC=5 ,CD=5,BD=2AD,则 AD 的长为 18(本小题满分 12 分)点 M(2pt,2pt 2)(t 为常数,且 t0)是拋物线 C:x 22py(p0)上一点,过M 作倾斜角互补的两直线 l1与 l2与 C 的另外交点分别为 P、Q.精选高中模拟试卷第 3 页,共 19 页(1)求证:直线 PQ 的斜率为 2t;(2)记拋物线的准线与 y 轴的交点为 T,若拋物线在 M 处的切线过点
6、 T,求 t 的值三、解答题19在极坐标系下,已知圆 O:=cos +sin 和直线l: (1)求圆 O 和直线 l 的直角坐标方程;(2)当 (0,)时,求直线 l 与圆 O 公共点的极坐标20(本小题满分 12 分)如图(1),在三角形 中, 为其中位线,且 ,若沿 将三角形 折起,使PCDAB2BDPCABP,构成四棱锥 ,且 .PAPFE(1)求证:平面 平面 ;EF(2)当 异面直线 与 所成的角为 时,求折起的角度.3精选高中模拟试卷第 4 页,共 19 页21设 ,证明:()当 x1 时,f(x) ( x1);()当 1x3 时, 22已知椭圆 C: + =1(ab0)的一个长轴
7、顶点为 A(2,0),离心率为 ,直线 y=k(x 1)与椭圆 C 交于不同的两点 M,N,()求椭圆 C 的方程;()当AMN 的面积为 时,求 k 的值23【常熟中学 2018 届高三 10 月阶段性抽测(一)】已知函数有一个零点为 4,且满足 .324fxaxbxc,Ra01f(1)求实数 和 的值;bc(2)试问:是否存在这样的定值 ,使得当 变化时,曲线 在点 处的切线互相平行?0 yfx0,fx精选高中模拟试卷第 5 页,共 19 页若存在,求出 的值;若不存在,请说明理由;0x(3)讨论函数 在 上的零点个数.gfa0,424武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿
8、者现从符合条件的志愿者中随机抽取100 名按年龄分组:第 1 组20,25),第 2 组25 ,30),第 3 组30,35),第 4 组35,40),第 5 组40,45,得到的频率分布直方图如图所示(1)分别求第 3,4,5 组的频率;(2)若从第 3,4,5 组中用分层抽样的方法抽取 6 名志愿者参加广场的宣传活动,应从第 3,4,5 组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这 6 名志愿者中随机抽取 2 名志愿者介绍宣传经验,求第 4 组至少有一名志愿者被抽中的概率精选高中模拟试卷第 6 页,共 19 页扶沟县高级中学 2018-2019 学年高二上学期第一次月考试卷数
9、学(参考答案)一、选择题1 【答案】C【解析】解:对于 C 中的向量:( , ,1)= (1,3,2)= ,因此与向量 =(1,3,2)平行的一个向量的坐标是 故选:C【点评】本题考查了向量共线定理的应用,属于基础题2 【答案】D【解析】解:选项 A:y= 在(0,+)上单调递减,不正确;选项 B:定义域为(0,+ ),不关于原点对称,故 y=lnx 为非奇非偶函数,不正确;选项 C:记 f(x)=x 3,f( x)=(x) 3=x3,f(x)=f(x),故 f(x)是奇函数,又y=x 3区间(0,+)上单调递增,符合条件,正确;选项 D:记 f(x)=|x|,f ( x)=|x|=|x|,f
10、(x) f(x),故 y=|x|不是奇函数,不正确故选 D3 【答案】C【解析】解:求导函数可得 f(x)=3x 212x+9=3(x1)( x3),abc,且 f(a )=f(b)=f(c )=0 a1b3 c,设 f(x)= (x a)(xb)(x c)=x 3(a+b+c)x 2+(ab+ac+bc)xabc ,f( x) =x36x2+9xabc,a+b+c=6,ab+ac+bc=9,b+c=6a,bc=9a(6a) ,a24a0,0 a4,0 a1b 3c ,f( 0) 0,f(1)0,f(3)0,精选高中模拟试卷第 7 页,共 19 页f( 0) f(1) 0,f(0)f(3)0故
11、选:C4 【答案】C【解析】解:根据题意,如图,设 O(0,0)、A (1,0 )、B (1,1)、C(0,1),分析可得区域 表示的区域为以正方形 OABC 的内部及边界,其面积为 1;x2+y21 表示圆心在原点,半径为 1 的圆,在正方形 OABC 的内部的面积为 = ,由几何概型的计算公式,可得点 P(x,y)满足 x2+y21 的概率是 = ;故选 C【点评】本题考查几何概型的计算,解题的关键是将不等式(组)转化为平面直角坐标系下的图形的面积,进而由其公式计算5 【答案】C【解析】解:若方程 + =1 表示椭圆,则满足 ,即 ,即3 m 5 且 m1,此时3m 5 成立,即充分性成立
12、,当 m=1 时,满足 3m5,但此时方程 + =1 即为 x2+y2=4 为圆,不是椭圆,不满足条件即必要性不成立精选高中模拟试卷第 8 页,共 19 页故“方程 + =1 表示椭圆”是“3m5”的充分不必要条件故选:C【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题6 【答案】B【解析】解:由 A,B 是以 O 为圆心的单位圆上的动点,且| |= ,即有| |2+| |2=| |2,可得OAB 为等腰直角三角形,则 , 的夹角为 45,即有 =| | |cos45=1 =1故选:B【点评】本题考查向量的数量积的定义,运用勾股定
13、理的逆定理得到向量的夹角是解题的关键7 【答案】A【解析】解:sinB+sin(AB)=sinC=sin(A+B),sinB+sinAcosBcosAsinB=sinAcosB+cosAsinB,sinB=2cosAsinB,sinB0,cosA= ,A= ,sinA= ,当 sinA= ,A= 或 A= ,故在ABC 中,sinB+sin(A B)=sinC 是 sinA= 的充分非必要条件,故选:A8 【答案】B精选高中模拟试卷第 9 页,共 19 页【解析】解:f(x),g( x)分别是定义在 R 上的偶函数和奇函数,且 f(x)g(x)=x 32x2,f( 2)g(2)=( 2) 32
14、( 2) 2=16即 f(2)+g (2)=f( 2)g(2)=16故选:B【点评】本题考查函数的奇函数的性质函数值的求法,考查计算能力9 【答案】C【解析】【分析】将圆 C 方程化为标准方程,找出圆心 C 坐标与半径 r,利用点到直线的距离公式表示出圆心到直线的距离 d,与 r 比较大小即可得到结果【解答】解:圆 C 方程化为标准方程得:( x1) 2+y2=2,圆心 C(1,0),半径 r= , 1,圆心到直线 l 的距离 d= =r,且圆心(1,0)不在直线 l 上,直线 l 与圆相交且一定不过圆心故选 C10【答案】A【解析】解:32+log 234,所以 f(2+log 23)=f(
15、3+log 23)且 3+log234f( 2+log23)=f(3+log 23)=故选 A11【答案】C.【解析】根据等差数列的性质, ,化简得 ,423111()2(2)aadad1ad,故选 C.1746273adS12【答案】B【解析】解:设圆锥底面圆的半径为 r,高为 h,则 L=2r, = (2r) 2h,精选高中模拟试卷第 10 页,共 19 页= 故选:B二、填空题13【答案】 , 1 【解析】解:设点 A(acos,bsin),则 B(acos,bsin )(0 );F(c, 0);AFBF, =0,即(c acos, bsin)(c+acos,bsin )=0,故 c2a
16、2cos2b2sin2=0,cos2= =2 ,故 cos= ,而|AF|= ,|AB|= =2c,而 sin= = , , ,sin , , , + ,精选高中模拟试卷第 11 页,共 19 页 ,即 ,解得, e 1;故答案为: , 1【点评】本题考查了圆锥曲线与直线的位置关系的应用及平面向量的应用,同时考查了三角函数的应用14【答案】 4 ,16 【解析】解:直线 l: (t 为参数),化为普通方程是 = ,即 y=tanx+1;圆 C 的参数方程 ( 为参数),化为普通方程是(x2) 2+(y1) 2=64;画出图形,如图所示 ;直线过定点(0,1),直线被圆截得的弦长的最大值是 2r
17、=16,精选高中模拟试卷第 12 页,共 19 页最小值是 2 =2 =2 =4弦长的取值范围是4 , 16故答案为:4 ,16【点评】本题考查了直线与圆的参数方程的应用问题,解题时先把参数方程化为普通方程,再画出图形,数形结合,容易解答本题15【答案】 必要不充分 【解析】解:由题意得 f(x)=e x+ +4x+m,f( x) =ex+lnx+2x2+mx+1 在(0,+)内单调递增,f(x)0,即 ex+ +4x+m0 在定义域内恒成立,由于 +4x4,当且仅当 =4x,即 x= 时等号成立,故对任意的 x(0,+),必有 ex+ +4x5mex 4x 不能得出 m5但当 m5 时,必有
18、 ex+ +4x+m0 成立,即 f(x)0 在 x(0,+)上成立p 不是 q 的充分条件,p 是 q 的必要条件,即 p 是 q 的必要不充分条件故答案为:必要不充分16【答案】 【解析】解:( ) 0+( 2) 3=1+(2) 2=1+ = 故答案为: 17【答案】 5 【解析】解:如图所示:延长 BC,过 A 做 AEBC ,垂足为 E,精选高中模拟试卷第 13 页,共 19 页CDBC,CD AE,CD=5,BD=2AD, ,解得 AE= ,在 RTACE,CE= = = ,由 得 BC=2CE=5 ,在 RTBCD 中,BD= = =10,则 AD=5,故答案为:5【点评】本题考查
19、平行线的性质,以及勾股定理,做出辅助线是解题的关键,属于中档题18【答案】【解析】解:(1)证明:l 1的斜率显然存在,设为 k,其方程为 y2pt 2k(x2pt)将与拋物线 x22py 联立得,x22pkx4p 2t(kt)0,解得 x12pt, x22p(kt),将 x22p(kt )代入 x22py 得 y22p(kt) 2,P 点的坐标为(2p(kt), 2p(kt) 2)由于 l1与 l2的倾斜角互补,点 Q 的坐标为(2p(kt),2p(kt) 2),kPQ 2t,2p( k t)2 2p(k t)22p( k t) 2p(k t)即直线 PQ 的斜率为2t.(2)由 y 得 y
20、 ,x22pxp拋物线 C 在 M(2pt,2pt 2)处的切线斜率为 k 2t.2ptp其切线方程为 y2pt 22t(x2pt ),又 C 的准线与 y 轴的交点 T 的坐标为( 0,精选高中模拟试卷第 14 页,共 19 页 )p2 2pt22t(2pt)p2解得 t ,即 t 的值为 .1212三、解答题19【答案】 【解析】解:(1)圆 O: =cos+sin ,即 2=cos+sin,故圆 O 的直角坐标方程为: x2+y2=x+y,即 x2+y2xy=0 直线 l: ,即 sincos=1,则直线的直角坐标方程为:yx=1,即 xy+1=0(2)由 ,可得 ,直线 l 与圆 O
21、公共点的直角坐标为(0,1),故直线 l 与圆 O 公共点的一个极坐标为 【点评】本题主要考查把极坐标方程化为直角坐标方程的方法,直线和圆的位置关系,属于基础题20【答案】(1)证明见解析;(2) 23【解析】试题分析:(1)可先证 , 从而得到 平面 ,再证 , 可得BAPADBPADCFEDB平面 ,由 ,可证明平面 平面 ;(2)由 ,取 的中点 ,连接CDEF/CEFG,可得 即为异面直线 与 所成的角或其补角,即为所折起的角度.在三角形中求角即可. 1GA试题解析:精选高中模拟试卷第 15 页,共 19 页(2)因为 ,取 的中点 ,连接 ,所以 , ,又 ,PADBG,FA/GCD
22、12F/ABCD,所以 , ,从而四边形 为平行四边形,所以 ,得;同时,1BC/FBG因为 , ,所以 ,故折起的角度 .PD3考点:点、线、面之间的位置关系的判定与性质21【答案】 【解析】证明:()(证法一):精选高中模拟试卷第 16 页,共 19 页记 g(x)=lnx+ 1 (x 1),则当 x1 时,g(x)= + 0,又 g(1)=0,有 g(x)0,即 f(x) ( x1);4(证法二)由均值不等式,当 x1 时,2 x+1,故 + 令 k(x)=lnxx+1 ,则 k(1)=0,k(x)= 10,故 k(x)0,即 lnxx1由得当 x1 时,f(x) ( x1);()记 h
23、(x)=f(x) ,由()得,h(x)= + = = ,令 g(x)=(x+5) 3216x,则当 1x3 时,g(x)=3(x+5) 22160,g( x)在(1,3)内是递减函数,又由 g(1)=0,得 g(x)0,h( x) 0,10因此,h(x)在(1,3)内是递减函数,又由 h(1)=0,得 h(x)0,于是,当 1x3 时,f(x) 1222【答案】 【解析】解:()椭圆一个顶点为 A (2,0),离心率为 ,b=精选高中模拟试卷第 17 页,共 19 页椭圆 C 的方程为 ;()直线 y=k(x 1)与椭圆 C 联立 ,消元可得( 1+2k2)x 24k2x+2k24=0设 M(
24、x 1,y 1),N(x 2,y 2),则 x1+x2= ,|MN|= =A(2,0)到直线 y=k(x1)的距离为AMN 的面积 S=AMN 的面积为 ,k= 1【点评】本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查三角形面积的计算,解题的关键是正确求出|MN|23【答案】(1) ;(2)答案见解析;(3)当 或 时, 在 有两个零点;1,4bc1a0gx0,4当 时, 在 有一个零点.0agx0【解析】试题分析:(1)由题意得到关于实数 b,c 的方程组,求解方程组可得 ;,14bc(3)函数的导函数 ,结合导函数的性质可得当 或 时, 在gx2134gxax 1a0gx有两个零点
25、;当 时, 在 有一个零点.0,410g0,试题解析:精选高中模拟试卷第 18 页,共 19 页(1)由题意 ,解得 ;01 4fcb1 4bc(2)由(1)可 知 ,32fxaxax ;2134fx假设存在 满足题意,则 是一个与 无关的定值,0 200134fxax a即 是一个与 无关的定值,2124384xa则 ,即 ,平行直线的斜率为 ;00x724kf(3) ,32gfax14xa ,24x其中 ,14aa22674510a设 两根为 和 ,考察 在 上的单调性,如下表0gx1x212xgxR1当 时, , ,而 ,0a10ga40ga15230ga 在 和 上各有一个零点,即 在
26、 有两个零点;x,2,4x,42当 时, , ,而 , 仅在 上有一个零点,即 在 有一个零点;g0, g0,3当 时, ,且 ,a4a1324a当 时, ,则 在 和 上各有一个零点,10gx,1,42即 在 有两个零点;gx0,精选高中模拟试卷第 19 页,共 19 页当 时, ,则 仅在 上有一个零点,10a10gagx1,42即 在 有一个零点;gx,4综上:当 或 时, 在 有两个零点;x,4当 时, 在 有一个零点.10ag0,点睛:在解决类似的问题时,首先要注意区分函数最值与极值的区别求解函数的最值时,要先求函数yf(x)在a,b内所有使 f(x )0 的点,再计算函数 yf(x
27、)在区间内所有使 f(x)0 的点和区间端点处的函数值,最后比较即得24【答案】 【解析】解:(1)由题意可知第 3 组的频率为 0.065=0.3,第 4 组的频率为 0.045=0.2,第 5 组的频率为 0.025=0.1;(2)第 3 组的人数为 0.3100=30,第 4 组的人数为 0.2100=20,第 5 组的人数为 0.1100=10;因为第 3,4,5 组共有 60 名志愿者,所以利用分层抽样的方法在 60 名志愿者中抽取 6 名志愿者,每组抽取的人数分别为:第 3 组 =3;第 4 组 =2;第 5 组 =1;应从第 3,4,5 组各抽取 3,2,1 名志愿者(3)记第 3 组 3 名志愿者为 1,2,3;第 4 组 2 名志愿者为 4,5;第 5 组 1 名志愿者为 6;在这 6 名志愿者中随机抽取 2 名志愿者有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6);共有 15 种,第 4 组 2 名志愿者为 4,5;至少有一名志愿者被抽中共有 9 种,所以第 4 组至少有一名志愿者被抽中的概率为 【点评】本题考查列举法计算基本事件数及事件发生的概率,频率分布直方图,考查计算能力