收藏 分享(赏)

广昌县高级中学2018-2019学年高二上学期第一次月考测试数学.doc

上传人:爱你没说的 文档编号:8627797 上传时间:2019-07-06 格式:DOC 页数:20 大小:614.50KB
下载 相关 举报
广昌县高级中学2018-2019学年高二上学期第一次月考测试数学.doc_第1页
第1页 / 共20页
广昌县高级中学2018-2019学年高二上学期第一次月考测试数学.doc_第2页
第2页 / 共20页
广昌县高级中学2018-2019学年高二上学期第一次月考测试数学.doc_第3页
第3页 / 共20页
广昌县高级中学2018-2019学年高二上学期第一次月考测试数学.doc_第4页
第4页 / 共20页
广昌县高级中学2018-2019学年高二上学期第一次月考测试数学.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、精选高中模拟试卷第 1 页,共 20 页广昌县高级中学 2018-2019 学年高二上学期第一次月考试卷数学班级_ 姓名_ 分数_一、选择题1 若 满足约束条件 ,则当 取最大值时, 的值为( )yx,03yx31xyyxA B C D 32 在 中, , ,其面积为 ,则 等于( )BC6A1bsinsinabcABA B C D323983923 如图 RtOAB是一平面图形的直观图,斜边 OB=2,则这个平面图形的面积是( )A B1 C D4 (6a3)的最大值为( )A9 B C3 D5 设 Sn为等比数列a n的前 n 项和,已知 3S3=a42,3S 2=a32,则公比 q=(

2、)A3 B4 C5 D66 正方体的内切球与外接球的半径之比为( )A B C D7 在区间 上恒正,则的取值范围为( )2fxax0,1A B C D以上都不对02a02a8 在直三棱柱中,ACB=90,AC=BC=1,侧棱 AA1= ,M 为 A1B1的中点,则 AM 与平面 AA1C1C 所成角的正切值为( )A B C D精选高中模拟试卷第 2 页,共 20 页9 在三棱柱 中,已知 平面 ,此三棱1ABC1A1=23,2BCABAC, ,柱各个顶点都在一个球面上,则球的体积为( )A B C. D326531210 的内角 , , 所对的边分别为,已知 , , ,则BA3a6bA(

3、)111A B 或 C 或 D4432311已知 x,y 满足约束条件 ,使 z=ax+y 取得最小值的最优解有无数个,则 a 的值为( )A3 B3 C 1 D112若 f(x)= x2+2ax 与 g(x)= 在区间1,2上都是减函数,则 a 的取值范围是( )A(,1 B0,1C(2,1)(1,1 D(,2)(1,1二、填空题13为了近似估计 的值,用计算机分别产生 90 个在1,1 的均匀随机数 x1,x 2,x 90和y1,y 2,y 90,在 90 组数对(x i,y i)(1i 90,iN *)中,经统计有 25 组数对满足 ,则以此估计的 值为 14曲线 在点(3,3)处的切线

4、与轴 x 的交点的坐标为 精选高中模拟试卷第 3 页,共 20 页15某城市近 10 年居民的年收入 x 与支出 y 之间的关系大致符合 =0.9x+0.2(单位:亿元),预计今年该城市居民年收入为 20 亿元,则年支出估计是 亿元16阅读右侧程序框图,输出的结果 i 的值为 17在半径为 2 的球面上有 A、B、C、D 四点,若 AB=CD=2,则四面体 ABCD 的体积的最大值为 18给出下列四个命题:函数 y=|x|与函数 表示同一个函数;奇函数的图象一定通过直角坐标系的原点;函数 y=3x2+1 的图象可由 y=3x2的图象向上平移 1 个单位得到;若函数 f(x)的定义域为0,2 ,

5、则函数 f(2x)的定义域为 0,4;设函数 f(x)是在区间a,b上图象连续的函数,且 f(a)f(b)0,则方程 f(x)=0 在区间a ,b上至少有一实根;其中正确命题的序号是 (填上所有正确命题的序号)三、解答题19若函数 f(x)=sin xcosx+ sin2x (0)的图象与直线 y=m(m 为常数)相切,并且切点的横坐标依次构成公差为 的等差数列()求 及 m 的值;()求函数 y=f(x)在 x0,2上所有零点的和精选高中模拟试卷第 4 页,共 20 页20如图,已知 AC,BD 为圆 O 的任意两条直径,直线 AE,CF 是圆 O 所在平面的两条垂线,且线段AE=CF= ,

6、AC=2 ()证明 ADBE;()求多面体 EFABCD 体积的最大值21某校高一数学兴趣小组开展竞赛前摸底考试甲、乙两人参加了 5 次考试,成绩如下:第一次 第二次 第三次 第四次 第五次甲的成绩 82 87 86 80 90乙的成绩 75 90 91 74 95()若从甲、乙两人中选出 1 人参加比赛,你认为选谁合适?写出你认为合适的人选并说明理由;()若同一次考试成绩之差的绝对值不超过 5 分,则称该次考试两人“水平相当” 由上述 5 次摸底考试成绩统计,任意抽查两次摸底考试,求恰有一次摸底考试两人“水平相当” 的概率精选高中模拟试卷第 5 页,共 20 页22(1)求 z=2x+y 的

7、最大值,使式中的 x、y 满足约束条件(2)求 z=2x+y 的最大值,使式中的 x、y 满足约束条件 + =123已知数列a n满足 a1= , an+1=an+ ,数列b n满足 bn=()证明:b n(0,1)()证明: =()证明:对任意正整数 n 有 an 精选高中模拟试卷第 6 页,共 20 页24在平面直角坐标系 xOy 中己知直线 l 的参数方程为 (t 为参数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线 C 的极坐标方程是 =4(1)写出直线 l 的普通方程与曲线 C 的直角坐标系方程;(2)直线 l 与曲线 C 相交于 A、B 两点,求AOB 的值精选高中模

8、拟试卷第 7 页,共 20 页广昌县高级中学 2018-2019 学年高二上学期第一次月考试卷数学(参考答案)一、选择题1 【答案】D【解析】考点:简单线性规划2 【答案】B【解析】试题分析:由题意得,三角形的面积 ,所以 ,又 ,013sinsi624SbcAcbc4bc1所以 ,又由余弦定理,可得 ,所以 ,4c 20o1os613a3a则 ,故选 B039sinsinisi6abABCA考点:解三角形【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理和余弦定理、三角形的面积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,本题的解答

9、中利用比例式的性质,得到 是解答的关键,属于中档试题sinsiniabcaABCA3 【答案】D【解析】解:RtOAB是一平面图形的直观图,斜边 OB=2,直角三角形的直角边长是 ,精选高中模拟试卷第 8 页,共 20 页直角三角形的面积是 ,原平面图形的面积是 12 =2故选 D4 【答案】B【解析】解:令 f(a)= (3 a)(a+6)= + ,而且6a3,由此可得函数f(a)的最大值为 ,故 (6a3)的最大值为 = ,故选 B【点评】本题主要考查二次函数的性质应用,体现了转化的数学思想,属于中档题5 【答案】B【解析】解:S n为等比数列a n的前 n 项和,3S 3=a42,3S

10、2=a32,两式相减得3a3=a4a3,a4=4a3,公比 q=4故选:B6 【答案】C【解析】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为 2 a,半径为: a,所以,正方体的内切球与外接球的半径之比为:故选 C7 【答案】C【解析】试题分析:由题意得,根据一次函数的单调性可知,函数 在区间 上恒正,则2fxax0,1,即 ,解得 ,故选 C.(0)1f20a02a考点:函数的单调性的应用.精选高中模拟试卷第 9 页,共 20 页8 【答案】D【解析】解:双曲线 (a0,b0)的渐近线方程为 y=

11、x联立方程组 ,解得 A( , ),B( , ),设直线 x= 与 x 轴交于点 DF 为双曲线的右焦点,F(C,0)ABF 为钝角三角形,且 AF=BF,AFB90,AFD45,即 DFDAc ,ba ,c 2a2a 2c 22a 2,e 22,e 又 e1离心率的取值范围是 1e故选 D【点评】本题主要考查双曲线的离心率的范围的求法,关键是找到含 a,c 的齐次式,再解不等式9 【答案】A【解析】精选高中模拟试卷第 10 页,共 20 页考点:组合体的结构特征;球的体积公式.【方法点晴】本题主要考查了球的组合体的结构特征、球的体积的计算,其中解答中涉及到三棱柱的线面位置关系、直三棱柱的结构

12、特征、球的性质和球的体积公式等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力和学生的空间想象能力,试题有一定的难度,属于中档试题.10【答案】B【解析】试题分析:由正弦定理可得: 或 ,故选 B.362,sin,0,i 4sinBB3考点:1、正弦定理的应用;2、特殊角的三角函数.11【答案】D【解析】解:作出不等式组对应的平面区域如图:(阴影部分)由 z=ax+y,得 y=ax+z,若 a=0,此时 y=z,此时函数 y=z 只在 B 处取得最小值,不满足条件若 a0,则目标函数的斜率 k=a0平移直线 y=ax+z,由图象可知当直线 y=ax+z 和直线 x+

13、y=1 平行时,此时目标函数取得最小值时最优解有无数多个,此时a=1,即 a=1若 a0,则目标函数的斜率 k=a0平移直线 y=ax+z,由图象可知当直线 y=ax+z,此时目标函数只在 C 处取得最小值,不满足条件综上 a=1故选:D精选高中模拟试卷第 11 页,共 20 页【点评】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用 z 的几何意义是解决本题的关键注意要对 a 进行分类讨论12【答案】D【解析】解:函数 f(x)= x2+2ax 的对称轴为 x=a,开口向下,单调间区间为a,+ )又f(x)在区间1,2 上是减函数,a1函数 g(x)= 在区间( ,a

14、)和(a,+)上均为减函数,g(x)= 在区间1,2 上是减函数,a 2,或 a1,即 a2,或 a 1,综上得 a(,2)(1,1 ,故选:D【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围二、填空题13【答案】 【解析】设 A(1,1),B(1, 1),则直线 AB 过原点,且阴影面积等于直线 AB 与圆弧所精选高中模拟试卷第 12 页,共 20 页围成的弓形面积 S1,由图知, ,又 ,所以【点评】本题考查了随机数的应用及弓形面积公式,属于中档题14【答案】 ( ,0) 【解析】解:y= ,斜率 k=y|x=3=2,切线方程是:y3= 2(x

15、3),整理得:y= 2x+9,令 y=0,解得:x= ,故答案为: 【点评】本题考查了曲线的切线方程问题,考查导数的应用,是一道基础题15【答案】 18.2 【解析】解:某城市近 10 年居民的年收入 x 和支出 y 之间的关系大致是 =0.9x+0.2,x=20,y=0.920+0.2=18.2(亿元)故答案为:18.2【点评】本题考查线性回归方程的应用,考查学生的计算能力,考查利用数学知识解决实际问题的能力,属于基础题16【答案】 7 精选高中模拟试卷第 13 页,共 20 页【解析】解:模拟执行程序框图,可得S=1,i=3不满足条件 S100,S=8,i=5不满足条件 S100,S=25

16、6,i=7满足条件 S100,退出循环,输出 i 的值为 7故答案为:7【点评】本题主要考查了程序框图和算法,正确得到每次循环 S,i 的值是解题的关键,属于基础题17【答案】 【解析】解:过 CD 作平面 PCD,使 AB平面 PCD,交 AB 与 P,设点 P 到 CD 的距离为 h,则有 V= 2h 2,当球的直径通过 AB 与 CD 的中点时,h 最大为 2 ,则四面体 ABCD 的体积的最大值为 故答案为: 【点评】本小题主要考查棱柱、棱锥、棱台的体积、球内接多面体等基础知识,考查运算求解能力,考查空间想象力属于基础题18【答案】 【解析】解:函数 y=|x|,(xR )与函数 ,(

17、x0)的定义域不同,它们不表示同一个函数;错;奇函数 y= ,它的图象不通过直角坐标系的原点;故错;函数 y=3( x1) 2的图象可由 y=3x2的图象向右平移 1 个单位得到;正确;精选高中模拟试卷第 14 页,共 20 页若函数 f(x)的定义域为0,2 ,则函数 f(2x)的定义域由 02x2,0x1,它的定义域为:0,1;故错;设函数 f(x)是在区间ab上图象连续的函数,且 f(a)f(b)0,则方程 f(x)=0 在区间a ,b上至少有一实根故正确;故答案为:三、解答题19【答案】 【解析】解:()f(x) =sinxcosx+ sin2x= x+ (1 cos2x) = 2x

18、2x=sin(2x ),依题意得函数 f(x)的周期为 且 0,2= ,=1 ,则 m=1;()由()知 f(x)=sin(2x ), , 又x0,2 , y=f(x)在 x0,2上所有零点的和为 【点评】本题主要考查三角函数两倍角公式、辅助角公式、等差数列公差、等差数列求和方法、函数零点基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归转化思想,是中档题20【答案】 【解析】()证明:BD 为圆 O 的直径,ABAD ,直线 AE 是圆 O 所在平面的垂线,ADAE ,ABAE=A,AD平面 ABE,ADBE;精选高中模拟试卷第 15 页,共 20 页()解:多

19、面体 EFABCD 体积 V=VBAEFC+VDAEFC=2VBAEFC直线 AE,CF 是圆 O 所在平面的两条垂线,AECF ,AEAC,AFACAE=CF= ,AEFC 为矩形,AC=2,S AEFC=2 ,作 BMAC 交 AC 于点 M,则 BM平面 AEFC,V=2V BAEFC=2 = 多面体 EFABCD 体积的最大值为 【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等21【答案】 【解析】解:()解法一:依题意有 , 答案一: 从稳定性角度选甲合适(注:按()看分数的标准,5 次考试,甲三次与乙相当,两次优于乙,所以选甲合适答案二: 乙

20、的成绩波动大,有爆发力,选乙合适解法二:因为甲 5 次摸底考试成绩中只有 1 次 90,甲摸底考试成绩不低于 90 的概率为 ;乙 5 次摸底考试成绩中有 3 次不低于 90,乙摸底考试成绩不低于 90 的概率为 所以选乙合适 精选高中模拟试卷第 16 页,共 20 页()依题意知 5 次摸底考试,“水平相当”考试是第二次,第三次,第五次,记为 A,B,C “ 水平不相当”考试是第一次,第四次,记为 a,b从这 5 次摸底考试中任意选取 2 次有 ab,aA,aB,aC, bA,bB,bC ,AB,AC,BC 共 10 种情况恰有一次摸底考试两人“水平相当”包括共 aA,aB,aC ,bA ,

21、bB ,bC 共 6 种情况5 次摸底考试成绩统计,任意抽查两次摸底考试,恰有一次摸底考试两人“水平相当” 概率 【点评】本题主要考查平均数,方差,概率等基础知识,运算数据处理能力、运算求解能力、应用意识,考查化归转化思想、或然与必然思想22【答案】【解析】解:(1)由题意作出可行域如下,精选高中模拟试卷第 17 页,共 20 页,结合图象可知,当过点 A(2 ,1)时有最大值,故 Zmax=221=3;(2)由题意作图象如下,精选高中模拟试卷第 18 页,共 20 页,根据距离公式,原点 O 到直线 2x+yz=0 的距离 d= ,精选高中模拟试卷第 19 页,共 20 页故当 d 有最大值

22、时,|z|有最大值,即 z 有最值;结合图象可知,当直线 2x+yz=0 与椭圆 + =1 相切时最大,联立方程 化简可得,116x2100zx+25z 2400=0,故=10000z 24116(25z 2400)=0,故 z2=116,故 z=2x+y 的最大值为 【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用23【答案】 【解析】证明:()由 bn= ,且 an+1=an+ ,得 , ,下面用数学归纳法证明:0b n1由 a1= (0,1),知 0b 11,假设 0b k1,则 ,0b k1, ,则 0b k+11综上,当 nN*时,b n(0, 1);()由 ,可得, , = = 故 ;()由()得:精选高中模拟试卷第 20 页,共 20 页,故 由 知,当 n2 时,= 【点评】本题考查了数列递推式,考查了用数学归纳法证明与自然数有关的命题,训练了放缩法证明数列不等式,对递推式的循环运用是证明该题的关键,考查了学生的逻辑思维能力和灵活处理问题的能力,是压轴题24【答案】 【解析】解:(1)直线 l 的参数方程为 (t 为参数),直线 l 的普通方程为 曲线 C 的极坐标方程是 =4, 2=16,曲线 C 的直角坐标系方程为 x2+y2=16(2)C 的圆心 C(0,0)到直线 l: +y4=0 的距离:d= =2,cos ,0 , ,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报