1、精选高中模拟试卷第 1 页,共 18 页坪山区第三中学 2018-2019 学年上学期高二数学 12 月月考试题含解析班级_ 姓名_ 分数_一、选择题1 下面茎叶图表示的是甲、乙两个篮球队在 3 次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以 m 表示若甲队的平均得分不低于乙队的平均得分,那么 m 的可能取值集合为( )A B C D2 设 b,c 表示两条直线, , 表示两个平面,则下列命题是真命题的是( )A若 b,c,则 bc B若 c, ,则 cC若 b,bc,则 c D若 c,c ,则 3 下列给出的几个关系中: ; ; ;,ab,ab,ba ,正确的有( )个0A.个 B
2、.个 C.个 D.个4 已知函数 f(x)满足 f(x)=f( x),且当 x( , )时,f (x)=e x+sinx,则( )A B CD5 某班设计了一个八边形的班徽(如图),它由腰长为 1,顶角为 的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为( )A 2sincos2 B sin3cosC. 31 D 216 与椭圆 有公共焦点,且离心率 的双曲线方程为( )精选高中模拟试卷第 2 页,共 18 页A BC D7 设函数 f(x)的定义域为 A,若存在非零实数 l 使得对于任意 xI(I A),有 x+lA,且 f(x+l )f(x),则称 f(x)为 I 上的 l
3、高调函数,如果定义域为 R 的函数 f(x)是奇函数,当 x0 时,f(x)=|xa2|a2,且函数 f(x)为 R 上的 1 高调函数,那么实数 a 的取值范围为( )A0a1 B a C 1a1 D2a 28 设 Sn为等比数列a n的前 n 项和,若 a1=1,公比 q=2,S k+2Sk=48,则 k 等于( )A7 B6 C5 D49 已知抛物线 的焦点为 , ,点 是抛物线上的动点,则当 的值最小时,24yxF(,0)AP|PFA的PF面积为( )A. B. C. D. 2224【命题意图】本题考查抛物线的概念与几何性质,考查学生逻辑推理能力和基本运算能力.10函数 y=ax+1(
4、a0 且 a1)图象恒过定点( )A(0,1) B( 2,1) C(2,0) D(0,2)11已知函数 f(x)的定义域为 R,其导函数 f(x)的图象如图所示,则对于任意 x1,x 2R( x1x2),下列结论正确的是( )f(x)0 恒成立;(x 1x2)f(x 1)f(x 2)0;(x 1x2)f(x 1)f(x 2)0; ; 精选高中模拟试卷第 3 页,共 18 页A B C D12已知全集 U=0,1,2,3,4,集合 M=2,3,4,N=0,1,4,则集合0 ,1可以表示为( )AMN B( UM)N CM ( UN) D( UM)( UN)二、填空题13设复数 z 满足 z(23
5、i)=6+4i(i 为虚数单位),则 z 的模为 14已知 f(x)= ,则 f( )+f( )等于 15若点 p(1,1)为圆(x3) 2+y2=9 的弦 MN 的中点,则弦 MN 所在直线方程为 16将曲线 向右平移 个单位后得到曲线 ,若 与 关于 轴对称,则:Csin(),04yx62C12x的最小值为_.17已知 是定义在 上函数, 是 的导数,给出结论如下:()fxR(fx)f若 ,且 ,则不等式 的解集为 ; 0()1f(xe(0,)若 ,则 ;ff2504ef若 ,则 ;()2 ),nnfN若 ,且 ,则函数 有极小值 ;xf ()(xf若 ,且 ,则函数 在 上递增()ef1
6、fe)0,)其中所有正确结论的序号是 18如图,在平行四边形 ABCD 中,点 E 在边 CD 上,若在平行四边形 ABCD 内部随机取一个点 Q,则点Q 取自ABE 内部的概率是 三、解答题19(本小题满分 10 分)选修 45:不等式选讲精选高中模拟试卷第 4 页,共 18 页已知函数 321)(xxf(I)若 ,使得不等式 成立,求实数 的最小值 ;R0 mf)(0 M()在(I)的条件下,若正数 满足 ,证明: .,ab31ba20已知椭圆 C: + =1(ab0)与双曲线 y2=1 的离心率互为倒数,且直线 xy2=0 经过椭圆的右顶点()求椭圆 C 的标准方程;()设不过原点 O
7、的直线与椭圆 C 交于 M、N 两点,且直线 OM、MN 、ON 的斜率依次成等比数列,求OMN 面积的取值范围21(本题满分 15 分)如图,已知长方形 中, , , 为 的中点,将 沿 折起,使得平面ABCD21AMDCAM平面 ADM(1)求证: ;(2)若 , 当 二 面 角 大 小 为 时 , 求 的 值 )10(EE3精选高中模拟试卷第 5 页,共 18 页【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力22如图,已知 AB 是圆 O 的直径,C 、D 是圆 O 上的两个点,CEAB 于 E,BD 交 AC 于 G,交 CE 于F,C
8、F=FG()求证:C 是劣弧 的中点;()求证:BF=FG精选高中模拟试卷第 6 页,共 18 页23已知函数 是定义在(-1,1)上的函数, 2(x)af12()5f(1)求 的值并判断函数 的奇偶性 a()f(2)用定义法证明函数 在(-1 ,1)上是增函数; 24如图,点 A 是单位圆与 x 轴正半轴的交点,B( , )(I)若AOB=,求 cos+sin的值;(II)设点 P 为单位圆上的一个动点,点 Q 满足 = + 若 AOP=2, 表示| |,并求| |的最大值精选高中模拟试卷第 7 页,共 18 页精选高中模拟试卷第 8 页,共 18 页坪山区第三中学 2018-2019 学年
9、上学期高二数学 12 月月考试题含解析(参考答案)一、选择题1 【答案】C【解析】【知识点】样本的数据特征茎叶图【试题解析】由题知:所以 m 可以取:0,1,2故答案为:C2 【答案】D【解析】解:对于 A,设正方体的上底面为 ,下底面为 ,直线 c 是平面 内一条直线因为 ,c ,可得 c,而正方体上底面为 内的任意直线 b 不一定与直线 c 平行故 b,c ,不能推出 bc得 A 项不正确;对于 B,因为 ,设 =b,若直线 cb,则满足 c ,但此时直线 c或 c,推不出 c,故 B 项不正确;对于 C,当 b,c 且 bc 时,可推出 c 但是条件中缺少“c”这一条,故 C 项不正确;
10、对于 D,因为 c,设经过 c 的平面 交平面 于 b,则有 cb结合 c 得 b,由 b可得 ,故 D 项是真命题故选:D【点评】本题给出空间位置关系的几个命题,要我们找出其中的真命题,着重考查了线面平行、线面垂直的判定与性质,面面垂直的判定与性质等知识,属于中档题3 【答案】C【解析】试题分析:由题意得,根据集合之间的关系可知: 和 是正确的,故选 C.,ab0考点:集合间的关系.4 【答案】D【解析】解:由 f(x)=f(x)知,f( )=f( )=f( ),当 x( , )时,f(x)=e x+sinx 为增函数精选高中模拟试卷第 9 页,共 18 页 ,f( )f( )f( ),f(
11、 )f( )f( ),故选:D5 【答案】A【解析】试题分析:利用余弦定理求出正方形面积 cos2cos2-11 S;利用三角形知识得出四个等腰三角形面积 sin2i124S;故八边形面积 2cosin1 S.故本题正确答案为 A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式 sin21i12S求出个三角形的面积 sin24S;接下来利用余弦定理可求出正方形的边长的平方 co-2,进而得到正方形的面积 cos2co-11 ,最后得到答案.6 【答案】 A【解析】解:由于椭圆的标准方程为:则 c2=1
12、32122=25则 c=5又双曲线的离心率a=4,b=3又因为且椭圆的焦点在 x 轴上,双曲线的方程为:故选 A精选高中模拟试卷第 10 页,共 18 页【点评】运用待定系数法求椭圆(双曲线)的标准方程,即设法建立关于 a,b 的方程组,先定型、再定量,若位置不确定时,考虑是否两解,有时为了解题需要,椭圆方程可设为 mx2+ny2=1(m 0,n0,mn),双曲线方程可设为 mx2ny2=1(m0,n0,mn),由题目所给条件求出 m,n 即可7 【答案】 B【解析】解:定义域为 R 的函数 f(x)是奇函数,当 x0 时,f(x)=|xa 2|a2= 图象如图,f(x)为 R 上的 1 高调
13、函数,当 x0 时,函数的最大值为 a2,要满足 f(x+l)f (x),1 大于等于区间长度 3a2(a 2),13a 2( a2), a故选 B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题8 【答案】D【解析】解:由题意,S k+2Sk= ,即 32k=48,2 k=16,精选高中模拟试卷第 11 页,共 18 页k=4故选:D【点评】本题考查等比数列的通项公式,考查了等比数列的前 n 项和,是基础题9 【答案】B 【解析】设 ,则 .又设 ,则 , ,所以2(,)4yP221|4()yFA214yt24yt1,当且仅当 ,即 时
14、,等号成立,此时点 ,22| 1()FtAtt(,2)P的面积为 ,故选B.P|Fy10【答案】D【解析】解:令 x=0,则函数 f(0)=a 0+3=1+1=2函数 f(x)=a x+1 的图象必过定点(0,2)故选:D【点评】本题考查了指数函数的性质和 a0=1(a0 且 a1),属于基础题11【答案】 D【解析】解:由导函数的图象可知,导函数 f(x)的图象在 x 轴下方,即 f(x)0,故原函数为减函数,并且是,递减的速度是先快后慢所以 f(x)的图象如图所示f(x)0 恒成立,没有依据,故 不正确;表示(x 1x2)与f (x 1)f (x 2)异号,即 f(x)为减函数故正确;表示
15、(x 1x2)与f (x 1)f (x 2)同号,即 f(x)为增函数故不正确,左边边的式子意义为 x1,x 2中点对应的函数值,即图中点 B 的纵坐标值,右边式子代表的是函数值得平均值,即图中点 A 的纵坐标值,显然有左边小于右边,故不正确,正确,综上,正确的结论为故选 D精选高中模拟试卷第 12 页,共 18 页12【答案】B【解析】解:全集 U=0,1,2,3,4,集合 M=2,3, 4,N=0,1,4, UM=0,1,N( UM)=0,1,故选:B【点评】本题主要考查集合的子交并补运算,属于基础题二、填空题13【答案】 2 【解析】解:复数 z 满足 z(2 3i)=6+4i(i 为虚
16、数单位),z= ,|z|= = =2,故答案为:2【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题14【答案】 4 【解析】解:由分段函数可知 f( )=2 = f( )=f( +1)=f( )=f( )=f( )=2 = ,精选高中模拟试卷第 13 页,共 18 页f( ) +f( )= + 故答案为:415【答案】:2xy 1=0解: P(1,1)为圆(x3) 2+y2=9 的弦 MN 的中点,圆心与点 P 确定的直线斜率为 = ,弦 MN 所在直线的斜率为 2,则弦 MN 所在直线的方程为 y1=2(x1),即 2xy1=0故
17、答案为:2xy 1=016【答案】 6【解析】解析:曲线 的解析式为 ,由 与 关于 轴对2C2sin()2sin()6446yxx1C2x称知 ,即 对一sin()si()464xx1cos)si(cos()04 切 恒成立, , ,由 得 的最小值R1co0sin()6(2)6k6(21),kZ为 6.17【答案】【解析】解析:构造函数 , , 在 上递增, ()()xgef()0xgefx()gxR ,错误;()xfe1f0构造函数 , , 在 上递增, ,xg()xff()R(215)(04) 正确;(2015)(4ff构造函数 , ,当 时, ,2)2()()()gffxffx()g
18、x, ,错误;nn1nnf由 得 ,即 ,函数 在 上递增,在 上()0fxf 0xf0fx()f0,)(,0)递减,函数 的极小值为 ,正确;)()由 得 ,设 ,则()xexff2xeff ()()xgef()()xgeffx精选高中模拟试卷第 14 页,共 18 页,当 时, ,当 时, ,当 时,(1)xex()0gx1x()0gxx,即 ,正确()0g0f18【答案】 【解析】解:由题意ABE 的面积是平行四边形 ABCD 的一半,由几何概型的计算方法,可以得出所求事件的概率为 P= ,故答案为: 【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题三、解答题
19、19【答案】【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力20【答案】 【解析】解:()双曲线的离心率为 ,所以椭圆的离心率 ,又直线 xy2=0 经过椭圆的右顶点,右顶点为(2,0),即 a=2,c= ,b=1,精选高中模拟试卷第 15 页,共 18 页椭圆方程为: ()由题意可设直线的方程为:y=kx+m(k0,m 0),M(x 1,y 1)、N (x 2,y 2)联立 消去 y 并整理得:(1+4k 2)x 2+8kmx+4(m 21)=0则 ,于是 又直线 OM、MN、ON 的斜率依次成等比数列 由 m0 得:又由=64k 2m216
20、(1+4k 2)(m 21)=16(4k 2m2+1)0,得:0m 22显然 m21(否则: x1x2=0,则 x1,x 2中至少有一个为 0,直线 OM、ON 中至少有一个斜率不存在,与已知矛盾) 设原点 O 到直线的距离为 d,则故由 m 的取值范围可得 OMN 面积的取值范围为(0,1)【点评】本题考查直线与圆锥曲线的综合应用,弦长公式以及三角形的面积的表式,考查转化思想以及计算能力21【答案】(1)详见解析;(2) .23【解析】(1)由于 , ,则 , 2ABMAMB又 平面 平面 ,平面 平面 , 平面 ,DCADCBACM 平面 ,3 分BM又 平面 ,有 ; 6 分精选高中模拟
21、试卷第 16 页,共 18 页22【答案】 【解析】解:(I)CF=FGCGF=FCGAB 圆 O 的直径CEAB精选高中模拟试卷第 17 页,共 18 页CBA=ACECGF=DGACAB=DACC 为劣弧 BD 的中点(II)GBC=FCBCF=FB同理可证:CF=GFBF=FG【点评】本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据 AB 是圆 O 的直径,CEAB 于 E,找出要证明相等的角所在的直角三角形,是解答本题的关键23【答案】(1) , 为奇函数;(2)详见解析。1afx【解析】试题分析:(1) ,所以 ,则函数 ,函数 的定义域为1254fa121xffx
22、,关于原点对称,又 ,所以函数 为奇函数;(2)设,22xf fxf是区间 上两个不等是实数,且 ,则 ,12,x1, 110212xyff,因为 , ,212112122 21xxxx1,21,x且 ,所以 ,则 ,所以 ,即 ,所以函数122x1201220xy在区间 上为增函数。fx,试题解析:(1) 所以 ,125fa=定义域为 ,关于原点对称,且 ,所以 为奇函数;221xf fxf精选高中模拟试卷第 18 页,共 18 页(2)设 是区间 上两个不等是实数,且 ,则12,x1,12x210x212xyff12212x因为 , ,且 ,1,x2,1x所以 ,则 ,所以 ,120x2120x即 ,0y所以函数 在区间 上为增函数。fx,考点:1.函数的奇偶性;2.函数的单调性。24【答案】 【解析】 解:()点 A 是单位圆与 x 轴正半轴的交点,B( , )可得 sin= , cos= , cos+sin= ()因为 P(cos2,sin2),A (1,0)所以 = =(1+cos2 ,sin2 ),所以 = = =2|cos|,因为 ,所以 =2|cos| ,| |的最大值 【点评】本题考查三角函数的定义的应用,三角函数最值的求法,考查计算能力